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Abstract. We show that for any n ≥ 5 there exist connected algebraic sub-

groups in the Cremona group Bir(Pn) that are not contained in any maximal
connected algebraic subgroup. Our approach exploits the existence of stably

rational, non-rational threefolds.
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Introduction

The goal of this work is to elucidate the algebraic structure of higher-dimensional
Cremona groups Bir(Pn), which are the groups of birational transformations of the
n-dimensional projective space.
It is well-known that Bir(P1) = PGL2(C) is an algebraic group, while Bir(Pn) with
n ≥ 2 has a much more intriguing group-theoretic nature [13, 8, 26, 9] and cannot be
endowed with the structure of an algebraic group. Thanks to the seminal work by
Blanc and Furter [7], we understand the topological obstruction to equip Bir(Pn),
n ≥ 2, even with the structure of an infinite-dimensional (or ind-)algebraic group.

In this context, a natural problem consists in studying algebraic groups lying in
Bir(Pn), n ≥ 2, up to conjugation.

Demazure formalised in [14] the notion of rational action of an algebraic group G
on an algebraic variety X, i.e. of algebraic subgroups of Bir(X) (see Definition 1.1).
After the work of Matsumura [28], it is known that Bir(X) is finite, when X is a
variety of general type and, from the view-point of the birational classification of
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algebraic varieties, we expect Pn to lie as far as possible from varieties of general
type. It is then natural to interpret the structure of connected algebraic subgroups
of Bir(Pn) as a measure of complexity for Cremona groups.

Connected algebraic subgroups of Bir(P2) have been classified by Enriques [16]:
up to conjugacy, they are all contained in (the connected component of the iden-
tity Aut◦ of) the automorphism group of P2 or of (minimal) Hirzebruch surfaces.
Moreover the Aut◦ of those rational surfaces are all non-conjugate in Bir(P2). More
recently, the classification of maximal finite algebraic subgroups has been completed
in [2] (see also [15, 35]).

Maximal connected algebraic subgroups of Bir(P3) have been classified by Umemura,
partially in collaboration with Mukai, in a series of papers [38, 39, 40, 30, 41, 42],
see [4, 5] for a modern proof using the Minimal Model Program: all connected
algebraic subgroups of Bir(P3) are contained, up to conjugacy, in a maximal one
and the full classification of those ones involves several discrete and one continuous
families. The classification of maximal finite algebraic subgroups of Bir(P3) is not
complete, but several results on special classes of finite subgroups of Bir(P3) have
been obtained in the last decade [31, 32, 3] and it is now clear how modern results
in birational geometry can be exploited in the study of Cremona groups [33, 8] (see
also [23]).

Any classification in dimension n ≥ 4 is currently unreachable, since we lack
fundamental ingredients such as the classification of Fano varieties; partial results
have been obtained in [6].

In this work we are interested in maximal connected algebraic subgroups of the
Cremona groups in higher dimensions. In the seminal work [14], Demazure studied
maximal connected algebraic subgroups of Bir(Pn) containing a torus of dimension
n: his approach originated the study of toric varieties (see also [4, Section 2.5]
for more results on conjugacy classes of tori in Bir(Pn)). An interesting feature
of connected algebraic subgroup of Bir(P2) and Bir(P3) is the following: they are
all contained, up to conjugacy, in a maximal one. Blanc asked 10 years ago the
following.

Question. Is every connected algebraic subgroup of Bir(Pn) contained in a maximal
one, up to conjugacy?

In [18, 17], the algebraic subgroups of Bir(C × P1), where C is a non-rational
curve, are classified up to conjugation. Moreover, Fong shows that if X is a surface
of Kodaira dimension −∞, then any algebraic subgroup of Bir(X) is contained in a
maximal algebraic subgroup of Bir(X) if and only if X is rational. Further results
for Bir(C × Pn), n ≥ 2, have been obtained in [19].

The main result of this work provides an answer to Blanc’s question.

Main Theorem. For n ≥ 5, then there exist connected algebraic subgroups of
Bir(Pn) which are not contained in any maximal one.

The approach of this work to study this structural question on Bir(Pn) is new
and does not depend on any classification, but rather on the nature of rationality
in higher dimension.

More concretely, we show the following: let X be the smooth stably rational
non-rational threefold of [1]. After birational modification, we may assume that
X is endowed with a fibration c : X → P2. Let n ≥ 1 and consider the projective
bundle Pn = PX(OX ⊕ c∗OP2(n)) over X. The total space Pn has dimension 4 and
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since X × Pm is rational for any m ≥ 2 [1, 36], the variety Pn × Pm is rational for
any m ≥ 1. We show that for any n ≥ 2 and any m ≥ 1, the connected algebraic
subgroup Aut◦(Pn × Pm) of Bir(Pm+4) is not contained in any maximal connected
algebraic subgroup of Bir(Pm+4).

According to the authors’ knowledge, it is to date unknown whether X × P1 is
rational, i.e. whether Pn is rational, or not. Therefore, we are currently unable
apply our technique to determine whether the Main Theorem holds for n = 4 or
not.

Our construction is inspired by the one used in [19], where it is shown that for
any n ≥ 2 and any curve C of genus ≥ 1, there group Bir(C × Pn) contains con-
nected algebraic subgroups that are not contained in a maximal connected algebraic
subgroup.

Acknolwedgements: We thank Jérémy Blanc, Pascal Fong, Jean-Philippe Furter,
Lena Ji, Vladimir Lazic, Andrea Petracci and Sokratis Zikas for interesting discus-
sions.

1. Preliminary results

We work over the field of complex numbers. Varieties are always projective
unless stated otherwise. We refer to [25] for the notion of terminality and the basic
notions on the minimal model program.

1.1. Group actions. We recall here some fundamental results on algebraic actions
on varieties.

Definition 1.1. Let Y be a variety and let G be an algebraic group. We say that
G acts rationally on Y if there exists a birational map

µ : G× Y 99K G× Y, (g, y) 7→ (g, µ(g, y))

that restricts to an isomorphism U → V on dense open subsets U, V ⊆ G×Y , whose
projections onto G are surjective, and such that µ(gh, ·) = µ(g, ·) ◦ µ(h, ·) for any
g, h ∈ G. If moreover the kernel of the induced homomorphism G → Bir(Y ), g 7→
µg is trivial, i.e. if G acts faithfully on Y , then G is called an algebraic subgroup of
Bir(X).

The algebraic subgroup G of Bir(X) is called maximal if it is maximal with
respect to the inclusion among the algebraic subgroups of Bir(X).

Notice that if W is a rational variety and ψ : W 99K Y a birational map and
G ⊆ Aut(W ) an algebraic group, then G × Y → Y , (g, y) 7→ (g, ψgψ−1(y)) is a
rational action of G on Y and G is an algebraic subgroup of Bir(Y ); conjugating G
by ψ embeds G into Bir(Y ).

On the other hand, if G is a connected subgroup of Bir(Y ) acting rationally on
Y , by the Weil regularisation theorem [43] there is a birational model of Y on which
G acts regularly.

Remark 1.2. By [2], any algebraic subgroup of Bir(P2) is contained in a maximal
algebraic subgroup. Nevertheless, there are infinite increasing sequences of algebraic
subgroups, see [19, Remark 2.8].

Remark 1.3. It is natural to ask if Bir(Pn) itself can be endowed with a structure
of an (ind-)algebraic group. We know this is not possible, thanks to the work [7]
(see also [4, Section 2.5] for the construction of the functor BirPn).
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We also recall the following two classical facts on regular actions. The first
follows from [11, Proposition 2, page 8].

Lemma 1.4. Let G be an algebraic group acting regularly on a projective variety X.
Let n = max{dim(G·x) | x ∈ X} be the maximal dimension of an orbit of G. Then,
the set {x ∈ X | dim(G · x) < n} is a closed subset of X. In particular, the union
of orbits of dimension n is a dense open G-invariant subset of X.

The second is the Blanchard’s lemma [12, Proposition 4.2.1].

Lemma 1.5. Let f : X → Y be a proper morphism between varieties such that
f∗(OX) = OY . If a connected algebraic group G acts regularly on X, then there
exists a unique regular action of G on Y such that f is G-equivariant.

1.2. Chow varieties. We refer to [24] for a presentation of Chow varieties, we
introduce here the notation and briefly recall some results.
Let X be a normal projective variety and G a connected group acting regularly on
X. Let Chow(X) be the Chow variety of X. We recall that Chow(X) has countably
many irreducible components (cf. [24, Theorem I.3.21(3)]).

If W is an irreducible subvariety of Chow(X), we denote by U ⊆ W × X the
universal cycle. Denote by u : U → X the natural morphism. If Z is a subvariety
of X we denote by [Z] the corresponding point of Chow(X).

Then G acts on every irreducible component of Chow(X). Indeed, G preserves
every irreducible component as those are countable. If [Z] is a subvariety of X and
g ∈ G, then the natural action is given by g · [Z] = [g(Z)].

1.3. Ruled varieties. This section contains some definitions and facts on ruled
varieties. We give first some definitions.

Definition 1.6. Let π : X → B be a morphism between normal projective varieties.
One says that π is

(1) a P1-fibration if its general fibre is a smooth rational curve;
(2) a birationally trivial P1-fibration if its generic fibre is isomorphic to P1

C(B).

Let π : X → B be a P1-fibration. Then one says that π is:

(3) a standard conic bundle if X and B are smooth and ρ(X/B) = 1;
(4) an embedded conic bundle if there is a rank 3 vector bundle E on B and

an embedding X ↪→ PB(E) such that π is the restriction of the natural
morphism ρ : PB(E) → B and X restricted to any fibre of ρ is a conic.

Remark 1.7.

(1) We notice that a birationally-trivial P1-fibration is a P1-fibration, and that
P1-fibrations are also called conic bundles.

(2) Moreover, a fibration is birationally trivial if and only if its general fibre is
isomorphic to P1 and it admits a birational section.

(3) By [34, Section 1.5], every standard conic bundle is embedded. If G is
an algebraic group acting regularly the standard conic bundle, then the
embedding is equivariant.

We will often consider projective bundles of relative dimension 1, i.e. P1-bundles,
which are projectivisations of a locally free sheaves. Let V be a projective variety.
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If E → V is a rank r vector bundle, we denote by P(E) or PV (E) the projective
bundle of lines in E

PV (E) = Proj(Sym(E))

together with the natural morphism π : P(E) → V .

Remark 1.8.

(1) In particular, a surjection E∨ → Q∨ determines an embedding P(Q) → P(E)
such that OP(Q)(1) ∼ OP(E)(1)|P(Q).

(2) By the Noether-Enriques theorem, a smooth P1-fibration over a curve is a
P1-bundle.

(3) If Y and Z are smooth, then a P1-bundle g : Y → Z is a standard conic
fibration.

1.4. Rationally connected and non rational threefolds. We will also need
the following statements on rationally connected irrational threefolds.

Proposition 1.9. Let X be a rationally connected non-rational threefold. Then
Aut◦(X) is trivial.

Proof. Assume by contradiction that Aut◦(X) is nontrivial. Since X is rationally
connected, Aut◦(X) is linear and thus contains a 1-parameter subgroup Γ. By [4,
Proposition 2.5.1], there is an open set X ′ of X which is of the form Γ× U . Since
X is rationally connected, any compactification of U is rationally connected. Since
it is a surface, it is also rational. Thus X is birational to Γ × U which is in turn
birational to P1 × P2, a contradiction. □

Remark 1.10. More generally, one can prove that Bir(X) contains no connected
algebraic subgroups, when X is a rationally connected, non-rational threefold [4,
Corollary 2.5.9].

Remark 1.11. Let X ′ be a rationally connected threefold. Assume X ′ has a conic
bundle structure X ′ → S. Then there is a birational model X of X ′ with a fibration
c : X → P2 with general fibre P1 and sitting in a diagram

X X ′

P2 S.

c

Indeed, since X ′ is rationally connected, the surface S is rational. Let P2 99K S be
a birational morphism, and let X → X ′×P2 be a resolution of the indeterminacies
of the induced map X ′ 99K P2. Then the induced morphism X → P2 is the required
morphism.

Moreover, if X ′ is not rational, then the generic fibre of c is not P1
C(P2).

2. From birationally-trivial P1-fibrations to P1-bundles

The aim of this subsection is to prove the following statement.
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Proposition 2.1. Let g : Y → Z be a birationally-trivial P1-fibration. Then there

is a smooth variety Z̃, a P1-bundle g̃ : Ỹ → Z̃ and a diagram

Y

g

��

// Ỹ

g̃
��

Z // Z̃

such that all the maps are Aut◦(Y )-equivariant and the horizontal arrows are bira-
tional.

We start with a preliminary lemma.

Lemma 2.2. Let Z be a smooth variety. Let g : Y → Z be a birationally-trivial
P1-fibration which is a Mori fibre space. Then g is flat.

Proof. Let Z0 be a birational section of g. Set σ = g|Z0
.

Step 1: Where we prove that the exceptional locus of σ is either divisorial or empty.
Let A be an ample divisor on Z0. Since Z is Q-factorial, the divisor σ∗A is Q-
Cartier and ample on Z. By the Negativity lemma, the difference σ∗σ∗A−A is an
effective divisor E. Notice that the support of E is contained in the exceptional
locus of σ. Assume that the exceptional locus of σ is not divisorial and let C be
a curve contracted by σ and contained in an irreducible component of Exc(σ) of
codimension at least 2. Then (σ∗σ∗A − E)C = −EC ≤ 0. On the other hand,
A · C > 0, a contradiction.

Step 2: Let Exc(g) be the union of the fibres of g of dimension strictly bigger than
1. In this step we prove that Exc(g) is divisorial (or empty).
We first prove that for every irreducible component E of Exc(g) the intersection
Z0 ∩ E has codimension 1 in E.

Let F be an irreducible component of dimension strictly bigger than 1 of a fibre
of g. It is enough to prove that F∩Z0 has codimension 1 in F . Assume the contrary.
Then there is a curve C in F disjoint from F ∩Z0. In particular Z0 ·C = 0. This is
a contradiction: since ρ(Y/Z) = 1 and the intersection of Z0 with the general fibre
of g is one, every curve contracted by g intersects Z0 positively.

Let E be an irreducible component of Exc(g). Then E ∩Z0 is a union of compo-
nents of Exc(σ). By Step 1 it has dimension dimE ∩Z0 = dimZ0 − 1 = dimY − 2.
By the above argument, dimE ∩ Z0 = dimE − 1. The claim follows.

Step 3: Where we prove that g is equidimensional, that is, that Exc(g) = ∅.
Let E ⊆ Exc(g) be an irreducible component. Since ρ(Y/Z) = 1 and since E is a
divisor by Step 2, there is a divisor δ on Z such that E ≡ aKY + g∗δ. Since the
intersection of E with a general fibre of g is zero, we have a = 0 and E ≡ g∗δ.
Let C be a curve in Z obtained as complete intersection of very ample divisors and
such that C · δ ̸= 0. Since g(E) has codimension at least 2 by assumption, there is

a curve C1 ⊂ Z with C1 ≡ C such that C1 ∩ g(E) = ∅. Let C̃1 be a curve in Y

such that g∗C̃1 = dC1 for some d ∈ Z>0. Then g
∗δ · C̃1 = δ · dC1 ̸= 0. On the other

hand, the curve C̃1 does not meet E, a contradiction.

Step 4: Conclusion.
By the Miracle flatness [37, Lemma 10.128.1], since Z is smooth, Y is Cohen-
Macaulay and g equidimensional, g is flat. □
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In [34, Theorem 1.13], it is proven that every P1-fibration is birationally equiv-
alent to a standard conic bundle. In our case, result can be made equivariant with
respect to the action of a group:

Proposition 2.3. Let g : Y → Z be a birationally-trivial P1-fibration. Then there
is a standard conic bundle h : V → S and a commutative diagram

Y

g

��

// V

h
��

Z Soo

where the arrows are Aut◦(Y )-equivariant and S is smooth.

Proof. After a base change, we can assume that Z is smooth. After running a
KY -MMP over Z and by Blanchard’s lemma (Lemma 1.5), we can assume that g
is a Mori fibre space. Thus, by Lemma 2.2, the morphism g is flat.

By the relative Kawamata-Viehweg vanishing theorem [20, Theorem 3.2.1], we
have Rig∗O(−KY ) = 0 for every i > 0. Since g is flat, the rank of g∗O(−KY ) is
constant and by [21, Theorem III 9.9, Corollary III 12.9] the sheaf g∗O(−KY ) is
locally free of rank three and carries an action of Aut◦(Y ).

Thus we have a rational map σ : Y 99K PZ(g∗O(−KY )) over Z which is Aut◦(Y )-
equivariant and an isomorphism onto its image on the open set where g is smooth.
If we set Y ′ the image of σ, then Y ′ → Z is an embedded conic bundle. We
can now follow the proof of [34, Theorem 1.13], by noticing that all the steps are
Aut◦(Y )-equivariant (using Remark 1.7(3)). □

Proof of Proposition 2.1. By Proposition 2.3, we may assume that g is a standard
conic bundle. Then the degeneration divisor C is simple normal crossings. We
prove now that g is a smooth P1-fibration, that is, that C = 0. Let Z0 be a
birational section of g. Assume by contradiction that C is non-empty and pick
z ∈ Supp(C) \ Sing(C). Then the fibre over z has two irreducible components ℓ1
and ℓ2. Since Z0 is a birational section, we have Z0 ·(ℓ1+ℓ2) = 1. Since the relative
Picard rank is 1, Z0 is relatively ample. Since Y is smooth, we have Z0 · ℓi ∈ Z for
i = 1, 2. A contradiction, because then Z0 · (ℓ1 + ℓ2) ≥ 2.

The morphism g is flat by Lemma 2.2. By [21, Corollary III 12.9] the sheaf
g∗O(Z0) is a rank 2 vector bundle over Z.

Moreover, the natural morphism Y → PZ(g∗O(Z0)) is Aut◦(Y )-equivariant,

and an isomorphism on the open set where g is smooth. We set therefore Ỹ =
PZ(g∗O(Z0)) and g̃ the natural morphism. □

3. Automorphisms of P1-bundles

3.1. Sections, elementary transformations and automorphism groups. In
this section, we show that invariant sections of projective bundles induce equivariant
elementary transformations of P1-bundles (Lemma 3.1 and Lemma 3.2) and we
recall the description the automorphism group of projective bundles (Lemma 3.3).

Lemma 3.1. Let V be a smooth variety, E → V a rank 2 vector bundle and
π : P(E) → V be the induced P1-bundle. Let V0 be a section of π defined by a
surjective morphism E∨ → L∨. Let D1 be a smooth effective irreducible divisor in
V . Then the following hold:
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(1) The sheaf E∨
1 equal to the kernel of the surjection E∨ → L∨|D1

is a rank
two vector bundle on V .

(2) More precisely, if E∨ is an extension

0 → M∨ → E∨ → L∨ → 0

then E∨
1 is an extension

0 → M∨ → E∨
1 → L∨(−D1) → 0.

(3) There is an induced birational map ψ : P(E) 99K P(E1) which factors as
η2 ◦ η−1

1 , where η1 : W → P(E) is the blow up of the subvariety of P(E)
defined by E∨ → L∨|D1

and η2 : W → P(E1) is the contraction of the strict
transform of π−1(D1) in W . In particular, ψ is a link

W

η1

��

W

η2

��
P(E)

π

��

ψ // P(E1)

π1

��
V V

Proof. We have a diagram of exact sequences

0

��

0

��
E∨
1

β

��

L∨(−D1)

��
0 //M∨ j // E∨ α //

α1

��

L∨ //

α2

��

0

L∨|D1
L∨|D1

Since M∨ = ker(α) and E∨
1 = ker(α1 ◦ α), we have an injection M∨ ↪→ E∨

1 .
Moreover, αβ(E∨

1 ) is sent to zero by α2, therefore αβ(E∨
1 ) is contained in L∨(−D1).

Via a diagram chase one can prove that the sequence

0 → M∨ → E∨
1 → L∨(−D1) → 0.

is exact. Since M∨ and L∨ have constant rank, the rank of E∨
1 is constant as well

and we have proved (1) and (2).
As for (3), let U be a trivialising set for E∨ and E∨

1 . There is a 2× 2 matrix M
representing the inclusion E∨

1 |U → E∨|U . If (e1, e2) and (e1, f2) are local frames for
E∨ and E∨

1 over U such that e1 is a local frame for M∨, then the matrix has the
form

M =

(
a1,1 a1,2
0 a2,2

)
where a1,1 ∈ Γ(U,O∗

V ), a2,2 ∈ Γ(U,OV (D1)), a1,2 ∈ Γ(U,OV ). The induced map

between π−1(U) = U × P1 and π−1
1 (U) = U × P1 is defined by the action of the
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transposed of M . Thus we have

ψ(z, [x0 : x1]) = (z, [a1,1x0 : a1,2x0 + a2,2x1]).

Without loss of generality we can assume that a1,1 = 1 and multiply by b = a−1
2,2 ∈

Γ(U,OV (−D1)). The section b is a local equation for D1 because E∨/E∨
1 = L∨|D1

is supported on D1. We can assume that there are local analytic coordinates z =
(z1, . . . , zk) in U such thatD1∩U = {z1 = 0}. Therefore there are a regular function
f(z) on U and a constant c such that ψ(z, [x0 : x1]) = (z, [cz1x0 : z1f(z)x0 + x1]).
The indeterminacy locus is thus D1 × {[1 : 0]}. We consider the chart x0 ̸= 0, set
s = x1/x0 and blow up the ideal (z1, s). The blow up is

W = {(z1, . . . , zk, s), [u : v]| z1v − su = 0}.
In the chart u ̸= 0 we have s = z1v/u. Thus on W we extend ψ to a morphism by

ψ̃((z1, . . . , zk, s), [u : v]) = (z, [cu : f(z)u+ v]). This proves (3). □

We give a criterion for the existence of a section fixed by the automorphisms.

Lemma 3.2. Let E → V be a rank 2 vector bundle. Assume that E = L1 ⊕ L2. If
H0(V,L1 ⊗L−1

2 ) = {0}, then Aut◦(P(E))V fixes pointwise the section of P(E) → V
corresponding to E∨ → L−1

2 .

Proof. The projection E∨ → L−1
2 induces a section V0 → P(E) such that O(1)|V0 ∼

L−1
2 (see Remark 1.8). Viceversa, any section V0 → P(E) with O(1)|V0 ∼ L−1

2

corresponds to a surjective morphism E∨ → L−1
2 . Now,

Hom(E∨,L−1
2 ) =H0(V,L−1

2 ⊗ E)
=H0(V,L1 ⊗ L−1

2 )⊕H0(V,L2 ⊗ L−1
2 ) = C

where the last equality follows from the hypothesis on L1,L2. It follows that V0
is unique with the property that the restriction of O(1) to it is L−1

2 and thus is
preserved by the automorphism group. □

We recall the description of the automorphism group of a projective bundle of
relative dimension 1.

Lemma 3.3. Let V be a smooth variety and E → V a rank-2 vector bundle and
π : P(E) → V be the induced P1-fibration. Suppose that Aut(P(E))V fixes a section
V0 of π, given by a surjective morphism ϕ∨ : E∨ → L∨. Let Γ := Γ(V,det E ⊗
ker(ϕ∨)⊗2). Then the following hold:

(1) If E is decomposable, then Aut(P(E))V ≃ Γ⋊Gm.
(2) If E is indecomposable, then Aut(P(E))V ≃ Γ.
(3) If Γ ̸= 0, then V0 is the only Aut(P(E))V -invariant section.
(4) If V is rationally connected and irrational, then Aut(P(E)) ≃ Aut(P(E))V .
(5) If V is rationally connected and irrational and Γ ̸= 0, then the orbits of the

Aut◦(P(E))-action are included in the fibres of π and are either of the form
π−1(v) ∩ V0 for v ∈ V or the intersection of a fibre π−1(v) of π with the
complement of V0 in P(E).

Proof. We essentially follow [27, pp.90–92]. Let V = ∪Vi be a trivializing cover for
P(E). For the morphism ϕ : L ↪→ E induced by the surjection surjection ϕ∨ : E∨ →
L∨, the image Imϕ coincides with the annihilator of ker(ϕ∨), which is a hyperplane.
By hypothesis, V0 = P(Imϕ) is fixed by Aut◦(P(E))V . If (v, [x0 : x1]) are local
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coordinates above Vi, we can suppose that V0 is given by x0 = 0. Therefore, an
automorphism φ ∈ Aut◦(P(E))V is given by

φi := φ|Vi
=

(
αi si
0 1

)
∈ PGL2(OV (Vi))

Moreover, the transition functions {gij}i,j of P(E) are given by

gij :=

(
aij cij
0 1

)
∈ PGL2(OV (Vi ∩ Vj))

where the {aij}ij = bij
dij

and bij are the transition functions of ker(ϕ∨). Notice that

the φi glue to φ ∈ Aut◦(P(E))V if and only if gijφj = φigij for all i, j, which is
equivalent to

αiaij = aijαj , aijsj + cij = αjcij + si for all i, j.

The first condition is equivalent to αi = αj =: α ∈ Γ(V,O∗
V ) = Gm for all i, j. The

second then becomes sjaij − si = cij(α− 1).
Suppose that α ̸= 1. Then conjugating gij as follows(

1 si
α−1

0 1

)(
aij cij
0 1

)(
1 − sj

α−1

0 1

)
=

(
aij 0
0 1

)
yields that P(E) is decomposable, i.e. P(E) ≃ P(ker(ϕ∨) ⊕ L′) for some subbundle
L′ ⊂ E . We can then assume that cij = 0 and obtain that si = aijsj . Recall that

aij =
bij
dij

, where bij and dij are respectively the transition functions of ker(ϕ∨) and

L′. The {d−1
ij } define the line bundle det E ⊗ ker(ϕ∨), so the si glue into a section

s ∈ Γ(V,det E ⊗ ker(ϕ∨)⊗2). This yields (1).
If α = 1, then si = aijsj and again the si glue to a section s ∈ Γ(V,det E ⊗

ker(ϕ∨)⊗2) and we obtain (2).
(3) If Γ is nontrivial, then it is a nontrivial unipotent group it has therefore at

most one fixed point on a general fibre of the P1-bundle π.
(4) If V is rationally connected and irrational, then Aut◦(V ) is trivial by Propo-

sition 1.9 and hence Aut◦(P(E)) ≃ Aut◦(P(E))V .
(5) This follows from (3) and (4). □

Remark 3.4. Suppose that V admits a conic fibration c : V → P2 and that E = OV ⊕
c∗OP2(n). Then det E ⊗ ker(ϕ∨) is trivial and in particular, Γ = Γ(V, ker(ϕ∨)) ≃
C[x, y, z]n is the additive group of homogeneous polynomials of degree n.

3.2. Trivial P1-bundles, automorphisms and sections. The main goal of this
section is to prove the following proposition.

Proposition 3.5. Let g : Y → Z be a P1-bundle. If Aut◦(Y )Z does not fix any
section, then Y = Z × P1.

We need two preliminary lemmas.

Lemma 3.6. Let X,Y be smooth projective varieties and f : X → Y be a smooth
P1-fibration. Assume f has a section Y0 ⊆ X. Then the following are equivalent:

(1) X ∼= P1 × Y
(2) for every general complete intersection curve Γ ⊆ Y we have XΓ := X ×Y

Γ ∼= P1 × Γ and Y0|XΓ
induces the projection onto P1.
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Proof. (1)⇒(2) is straightforward. We prove (2)⇒(1) by induction on dimY . If
dimY = 1 the claim is true. Assume thus the claim when the base of the fibration
has dimension n− 1 and assume that dimY = n.

Let H ⊆ Y be a smooth hyperplane section such that

H1(Y, f∗OX(Y0)⊗OY (−H)) = 0(3.1)

LetXH := X×YH. Then (2) holds in particular for the restriction f |XH
: XH → H.

By inductive hypothesis we have XH
∼= P1 × H. By considering the long exact

sequence induced by the restriction to XH , we get an exact sequence

H0(X,OX(Y0)) → H0(XH ,OXH
(Y0)) → H1(X,OX(Y0−XH)) = H1(X,OX(Y0−f∗H)).

The beginning of the Leray spectral sequence yields an exact sequence

0 → H1(Y, f∗OX(Y0−f∗H))) → H1(X,OX(Y0−f∗H)) → H0(Y,R1f∗OX(Y0−f∗H)).

By (3.1) we haveH1(Y, f∗OX(Y0−f∗H))) = 0. Moreover the stalk of R1f∗OX(Y0−
f∗H) over a closed point has dimension h1(P1,O(1)) = 0. ThereforeH1(X,OX(Y0−
f∗H)) = 0 and the restriction map H0(X,OX(Y0)) → H0(XH ,OXH

(Y0)) is surjec-
tive.

Since OXH
(Y0) is base-point-free by induction hypothesis, the base locus of

OX(Y0) is disjoint from XH . This holds for every H verifying (3.1), therefore
OX(Y0) is base-point-free and defines a morphism ϕ : X → Z. We want to prove
that Z = P1.

We now show that Z is a curve. Let y1, y2 ∈ Y be two distinct points. In order
to show that dimZ = 1, it suffices to show that ϕ(Xy1) = ϕ(Xy2). Let H1, H2 be
two hyperplanes in Y satisfying (3.1). Then H1∩H2 ̸= ∅ and we pick y ∈ H1∩H2.
For each i = 1, 2, we have a commutative diagram

XHi
P1

X Z

ϕ|XHi

ιHi
jHi

ϕ

where ιHi and jHi are the inclusion. For i = 1, 2, we have: since Xyi , Xy ⊂ XHi and
ϕ|XHi

: XHi
→ P1 is the projection onto the second factor for i = 1, 2, we obtain

ϕ(Xyi) = (ϕ ◦ ιHi
)(Xyi) = (jHi

◦ ϕ|XHi
)(Xyi)

= (jHi
◦ ϕ|XHi

)(Xy) = (ϕ ◦ ιHi
)(Xy) = ϕ(Xy).

Therefore Z is a smooth curve. Since Xy
∼= P1, we get ϕ(Xy) = Z, proving that

Z ∼= P1. □

Lemma 3.7. Let S → C be a P1-bundle from a projective surface to a curve. If
Aut◦(S)C does not fix any section, then S ∼= C × P1.

Proof. If g(C) = 0, then S is isomorphic to a Hirzebruch surface (this is classical,
but you may find a mordern proof in [5, Lemma 2.4.6]). As Aut◦(S)C does not fix
any section, we have S ≃ P1 × P1. If g(C) ≥ 1, then [18, Proposition 2.18] and our
assumption imply that either S ≃ C×P1 or that min{σ2 | σ section of S → C} > 0.
In the latter case, Aut◦(S) is finite by [27, Theorem 2(1)] and [18, Proposition 2.15],
against our assumption. □
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We are now ready to prove Proposition 3.5.

Proof of Proposition 3.5. Let C be a complete intersection curve in Z and S =
Y ×Z C such that the image of the restriction

Aut◦(Y )Z → Aut◦(S)C

does not fix any section in S. Such a curve C exists since Aut◦(Y )Z does not fix
any section of g. Since g is a P1-bundle, the morphism S → C is a P1-bundle. By
Lemma 3.7 we have S = C × P1. By Lemma 3.6 we have Y = Z × P1. □

4. A family of projective bundles over a rationally connected
non-rational threefold

We introduce the projective bundle Pn, a main player in this article, and prove
Proposition 4.3 below that characterises Aut◦(Pn)-equivariant birational maps start-
ing from Pn.

Definition 4.1. Let X be a rationally connected threefold, admitting a fibra-
tion c : X → P2 with general fibre P1. They exist by [1]. We define Pn =
PX(OX⊕c∗OP2(n)) and π : Pn → X. LetX0 be the section defined by the surjective
morphism OX ⊕ c∗OP2(−n) → c∗OP2(−n).

Let us recall the properties of Aut◦(Pn).

Lemma 4.2. Let X be a rationally connected threefold, admitting a fibration c : X →
P2 with general fibre P1. Assume that X is not rational. Let π : Pn → X be the
P1-bundle defined in (4.1). The group Aut◦(Pn) has the following properties:

(1) there is an equality Aut◦(Pn) = Aut◦(Pn)X ;
(2) the group Aut◦(Pn) fixes a section V0 of π;
(3) there is an isomorphism Aut◦(Pn) ∼= Γ⋊Gm, where Γ is an additive group

of dimension (n+1)(n+2)/2. In particular, if n ≥ 1, then dimAut◦(Pn) ≥
4;

(4) the orbits of the action of Aut◦(Pn) are included in fibres of π and are
either of the form π−1(x) ∩ X0 for x ∈ X or the intersection of a fibre
π−1(x) of π with the complement of X0 in Pn.

Proof. The second statement (2) follows from Lemma 3.2. Statement (1) follows
from the short exact sequence induced by the Blanchard’s lemma, or, equivalently,
by Lemma 3.3(4) and (2). Statement (3) follows from Remark 3.4. We get (4) from
Lemma 3.3(5). □

The main goal of this section is to prove the following statement.

Proposition 4.3. Let n ≥ 2 and let Φ: Pn 99K W be a birational Aut◦(Pn)-
equivariant map. Then the following hold:

(1) Aut◦(Pn) is a normal subgroup of Aut◦(W );
(2) there are smooth varieties Y, Z and a fibration Y → Z with generic fi-

bre P1
C(Z) and a birational Aut◦(W )-equivariant map η : W 99K Y and a

birational map φ : X 99K Z fitting into the following commutative diagram

Pn W Y

X Z

Φ η

φ



MAXIMAL SUBGROUPS IN THE CREMONA GROUP 13

To prove Proposition 4.3, let us fix the following notation and construction.

Construction 4.4. Notation as in Proposition 4.3. Since Φ is Aut◦(Pn)-equivariant,
the group Aut◦(Pn) acts on W . The general orbit has dimension 1, therefore by
Lemma 1.4 the orbits of the action of Aut◦(Pn) on W have dimension 0 or 1.
Let K0 ⊆ Chow(W ) be the subvariety parametrising the orbits of Aut◦(Pn) and
q0 : U0 → K0 the restriction of the universal family. Let K ⊇ K0 be the smallest
Aut◦(W )-invariant closed set in Chow(W ) and u : U → K the restriction of the
universal family.

U0 U W

K0 K

u0 u

e

There are evaluation morphisms e : U → W and e0 = e|U0 : U0 → W . Those are
Aut◦(W )-equivariant and Aut◦(Pn)-equivariant respectively. We notice that e0 is
birational by Lemma 4.2.

In the following lemmas we follow the notation from Construction 4.4 and Propo-
sition 4.3.

Lemma 4.5. The group Aut◦(Pn) is a normal subgroup of Aut◦(W ) if and only if
K0 = K.

Proof. The group Aut◦(Pn) is a normal subgroup of Aut◦(W ) if and only if Aut◦(W )
permutes the Aut◦(Pn)-orbits in W . This is the case if and only if Aut◦(W ) pre-
serves K0. By minimality of K, this is equivalent to K0 = K. □

Lemma 4.6. If Φ does not contract X0, then K0 = K.

Proof. By Lemma 4.2, the only Aut◦(Pn)-invariant proper closed subvarieties of
Pn are union of fibres of π or X0. If X0 is not contracted by Φ, then there exists
an open nonempty subset U ⊂ X such that Φ|π−1(U) is an isomorphism.

Suppose that K0 ̸= K and let M be the pull-back by π : Pn → X of an ample
divisor on X. Let [Γ] ∈ K \ K0 and [Γ0] ∈ K0 be classes of curves Γ,Γ0 on W such
that Γ0 ⊂ Φ(π−1(U)) and such that Γ is not in the exceptional locus of Φ−1.

We denote by (p, q) : Ŵ → Pn×W an Aut◦(Pn)-equivariant resolution of Φ. By
Lemma 4.2, the conic bundle π : Pn → X has a unique Aut◦(Pn)-invariant section
X0 ⊂ Pn, and by X̂0 we denote its strict transform in Ŵ .

Let Γ̂0 be the strict transform of Γ0 in Ŵ and let Γ̂ be an irreducible curve in
Ŵ such that q∗(Γ̂) = Γ. Notice that Γ̂ is not contracted by π ◦ p, because [Γ] /∈ K0.
Then

Claim 4.7.
p∗M · Γ̂0 = p∗M · Γ̂ + p∗M · C

for some curve C in Ŵ .

Assuming the claim, we finish the proof. The left-hand side is zero, because

[Γ0] ∈ K0, while p
∗M · Γ̂ > 0 and p∗M ·C ≥ 0. This is impossible, so it follows that

K0 = K.

We are left with the proof of Claim 4.7. Let (a, b) : Û → U × Ŵ be a resolution

of the indeterminacies of U 99K Ŵ and let û : Û → K be the induced fibration. Let
C be an irreducible curve in K such that [Γ], [Γ0] ∈ C. Let S be the component
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of dimension 2 of û−1(C) surjecting onto C. Then b∗û
∗[Γ0] = Γ̂0 and there is an

effective curve C such that b∗û
∗[Γ] = Γ̂ + C. The claim follows as b∗û

∗[Γ0] ≡
b∗û

∗[Γ]. □

Lemma 4.8. Suppose that Aut◦(Pn) is a not normal subgroup of Aut◦(W ) and
that every Aut◦(W )-equivariant desingularisation of W extracts X0. Let [Γ0] ∈ K0

be a general point, let G ⊂ Aut◦(W ) be a 1-parameter subgroup and g ∈ G a

general element. Let g̃Γ0 be the strict transform of gΓ0 in Pn. Then g̃Γ0 ∩X0 is a
non-empty finite set.

Proof. Let Ŵ → W be an Aut◦(W )-equivariant desingularisation. Then Ŵ → W

extracts X0. We denote by X̂0 the strict transform of X0 in Ŵ . Then the induced

birational map Pn 99K Ŵ is an isomorphism at the generic point of X0 and induces

a birational map X0 99K X̂0. Let [Γ0] ∈ K0 be the class of a general curve Γ0 such

that its strict transform Γ̂0 in Ŵ meets X̂0 in a point lying in the open set where

Ŵ 99K Pn is an isomorphism. Then for general g ∈ G, the curve gΓ̂0 meets X̂0 in

a point lying in the open set where Ŵ 99K Pn is an isomorphism. Let g̃Γ0 be the

strict transform of gΓ0 in Pn. Then g̃Γ0 ∩X0 is non-empty. □

Lemma 4.9. Suppose that Aut◦(Pn) is a not normal subgroup of Aut◦(W ). Then
there is an Aut◦(W )-equivariant desingularisation of W which does not extract X0.

Proof. We prove the statement by contradiction. Suppose that all Aut◦(W )-equiva-
riant desingularisation of W extract X0.
Since Aut◦(Pn) is not normal in Aut◦(W ), by Lemma 4.5 we have K0 ⊊ K. Then
there is a 1-parameter subgroup G ⊂ Aut◦(W ) with G ̸⊆ Aut◦(Pn) and such that
for a general g ∈ G, for a general [Γ0] ∈ K0, we have [gΓ0] ̸∈ K0. Let C be the strict
transform of gΓ0 in Pn. Lemma 4.8 implies that C ∩ X0 is non-empty. Let H ⊂
Aut◦(Pn) be an additive 1-parameter subgroup, set Ct := tC, t ∈ H, and consider
the pencil {Ct}t∈H . The pencil defines a morphism µ : A1 × P1 → Pn. Let F be
the normalisation of the Zariski-closure of µ(A1 × P1) and n : F → Pn the induced
morphism. The image π(C) is a curve because [gΓ0] ̸∈ K0. Let n : D → π(C) be
the normalisation of π(C). By abuse of notation, the strict transform of Ct (resp.
C) on F is denoted by Ct (resp. C) as well, as no confusion will arise.

Notice that F is smooth and that it is a P1-bundle above D. Let θ : S → F be
a minimal resolution of the base-locus of the pencil {Ct}t∈H . Then there is a conic
fibration u : S → P1, whose fibres are the strict transforms Ct of Ct, such that the
following diagram commutes.

A1 × P1 S F Pn

A1 P1 D X

u

µ

θ

u

n

π π

n

Notice that since Γ0 is rational, so is C = gΓ0 and thus D ≃ P1. By abuse of
notation, the strict transform of X0 on F will be denoted by X0 as well, as no
confusion will arise. Notice that H fixes X0 pointwise as H ⊂ Aut◦(Pn), so all the
points in C ∩X0 are base-points of the pencil {Ct}t∈H .
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The H-action on F lifts to S and permutes non-trivially the fibres of u, since
any fibre of π intersects C in only finitely many points. By the Blanchard’s lemma
([10], [12, Proposition 4.2.1]), H acts on P1 (base of the fibration u) and, since it
is additive, it fixes exactly one point [∞] ∈ P1. Moreover, a curve E contained in
the exceptional locus of θ is either contained in a fibre of u or it is a section of u,
and the latter is the case if and only if E is the exceptional divisor of a point that
is blown up last, or, equivalently, a (−1)-curve.

Claim. Ct is a section of π : F → D if t ∈ H is general.
Proof. Let f be a fibre of π, which is disjoint from the exception locus of θ and such
that H acts non-trivially on f . The fibre being disjoint from the exceptional locus
implies that the pullback θ∗f and the strict transform f̄ of f in S coincide. The
action of H being non-trivial implies that f̄ is a section of u. Indeed, the restriction
u : f̄ → P1 is surjective and H-equivariant, therefore the ramification and branch
locus are preserved by H. But those are both supported on at most one point and
by Hurwitz formula this is possible only if u has degree 1. Let t be such that Ct is
irreducible. Thus we get

f · Ct = θ∗f · Ct = f̄ · Ct = 1

where the first equality is the projection formula, the second is because the pullback
θ∗f coincides with the strict transform f̄ , and the third because f̄ is a section of u.
This finishes the proof that Ct is a section of π : F → D if t ∈ H is general.

In particular, C = C0 is a section of π. It follows that every fibre of π meets the
base-locus in F in at most one point. Since C ∩X0 is non empty, we pick a point
y0 ∈ C∩X0, we set 0 = π(y0) ∈ D and f0 = π−1(0). Let f0 = ft0 , ft1 , . . . , ftl be the

fibres of π meeting the base-locus of the pencil {Ct}t∈H , and let fti (resp. f0) be
the strict transform of fti (resp. f0) in S. Since Ct is a section of π, the fti are not
contained in the union ∪t∈HCt = θ(A1 × P1), and more precisely the intersection
of fti with ∪t∈HCt coincides with one point. Therefore each fti is contained in
θ(u−1[∞]).

For each i ≥ 0, denote by Eij the irreducible components of θ−1(yi) that are not
sections of u and by Eseci the unique irreducible component that is a section of u.
Since Exc(θ) is preserved by H, we have θ(Eij) = [∞] for every i, j. Then

θ∗C0 = C0 +
∑

aijEij +

l∑
i=0

aiE
sec
i

for some integers aij , ai ≥ 0. Denote by C∞ the fibre of u above [∞]. Since all Eij
are contained in C∞ and the Eseci are sections of u, we have

C∞ · θ∗C0 = Ct · θ∗C0 =

l∑
i=0

ai, for any t ∈ H.

We also have

C∞ = θ∗(αX0 +

l∑
i=0

βifti)−
l∑
i=0

biE
sec
i + C ′

for some integers α, βi, bi ≥ 0 and some effective divisor C ′ having no common
component with

∑
Eseci . In fact, bi ≥ βi ≥ 1 for all i ≥ 1, because Eseci ⊆
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supp(θ∗fti) and f̄ti is contained in C∞ for i ≥ 1. Furthermore, b0 ≥ β0 + α ≥ 2,
because Esec0 ⊂ supp(θ∗f0) ∩ supp(θ∗X0) and f̄0 is contained in C∞. We compute

l∑
i=0

ai = C̄∞ · θ∗C0 = C̄∞ ·

(
l∑
i=0

aiE
sec
i

)

=

(
θ∗(αX0 +

l∑
i=0

βifti)−
l∑
i=0

biE
sec
i + C ′

)(
l∑
i=0

aiE
sec
i

)
(Esec

i )2=−1
=

l∑
i=1

biai + C ′ ·

(
l∑
i=1

aiE
sec
i

)
≥

l∑
i=0

biai ≥ a0 +

l∑
i=0

ai.

where the last inequality holds because b0 ≥ 2 and bi ≥ 1 for i ≥ 1. It follows
that a0 = 0, which contradicts f0 containing a base-point of {Ct}t∈H . This proves
that there is an Aut◦(W )-equivariant desingularisation ofW which does not extract
X0. □

Lemma 4.10. Suppose that Aut◦(Pn) is a not normal subgroup of Aut◦(W ). Then
Φ does not contract X0.

Proof. Suppose that Φ contracts X0. By Lemma 4.9, there exists µ : W̃ → W an
Aut◦(W )-equivariant desingularisation of W which does not extract X0.

We denote by (p, q) : Ŵ → Pn ×W an Aut◦(Pn)-equivariant resolution of the
indeterminacy of Φ. By Lemma 4.2(3), the conic bundle π : Pn → X has a unique

Aut◦(Pn)-invariant section X0 ⊂ Pn, and by X̂0 we denote its strict transform in

Ŵ .
Let (p̄, q̄) : W → Ŵ × W̃ be a resolution of the indeterminacies of µ−1q : Ŵ 99K

W̃ , such that q̄ is a composition of blow-ups of smooth centres.

W

Ŵ W̃

Pn W

p̄ q̄

p q µ

Φ

Then the strict transform X0 inW is among the exceptional divisors of those blow-
ups. It follows that X0 is birational to Pk×Z with k ∈ {1, 2, 3} and dimZ = 3−k.
Since dimZ ≤ 2 and Z is rationally connected, Z is rational and so is X0. This
contradicts the hypothesis that X is not rational. □

Proof of Proposition 4.3. We first prove that K0 = K. If not, by Lemma 4.5, the
group Aut◦(Pn) is not normal in Aut◦(W ). By Lemma 4.10 the map Φ does not
contract X0. This is a contradiction with Lemma 4.6.

Therefore K0 = K and Aut◦(Pn) is normal in Aut◦(W ) by Lemma 4.5. Let
U and K be Aut◦(W )-equivariant compactifications of U and K such that there
is a morphism u : U → K extending u. The map e : U 99K W is birational and
Aut◦(W )-equivariant, see Construction 4.4. We set Y = U and Z = K.

Moreover, Z is birational to X because K0 = K parametrises the 1-dimensional
orbits of Aut◦(Pn). □
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5. Aut◦(Pn) is not contained in a maximal subgroup of Bir(Pn)

The aim of this section is to show in Theorem 5.2 that Aut◦(Pn) is not contained
in a maximal connected algebraic subgroup of Bir(Pn) if n ≥ 2.

Proposition 5.1. Let V be a smooth variety of dimension at least 3. Let E → V be
a rank 2 vector bundle. Assume that Aut◦(P(E))V contains a non-trivial additive
group and fixes a section of π : P(E) → V . Then there is a rank 2 vector bundle
E1 → V and an Aut◦(P(E))V -equivariant birational map P(E) 99K P(E1) over V
such that Aut◦(P(E))V ⊊ Aut◦(P(E1))V .

Proof. From the two hypotheses on Aut◦(P(E))V , it follows that there is a unique
section V0 fixed by Aut◦(P(E))V . This section corresponds to the data of a line
bundle L on V and a surjective morphism E∨ → L∨ (see Remark 1.8). Let M∨

be the kernel of E∨ → L∨. Then M∨ is a rank 1 torsion-free sheaf on V and it is
locally free by [22, Proposition 1.9].

We have Aut◦(P(E))V ≃ Γ⋊G, for some non-trivial additive group Γ and G =
Gm or G = {1}, see Lemma 3.3. Let D be a very ample divisor on V such that

• there is a smooth element D1 ∈ |D|;
• the line bundle M∨ ⊗ L(D) is very ample, so that Ext1V (L∨(−D),M∨) =
H1(M∨ ⊗ L(D)) = 0; and

• dimΓ < dimH0(V,M∨ ⊗ L(D)).

Consider now the kernel E∨
1 of the surjection E∨ → L∨|D1 . By Lemma 3.1(2), the

sheaf E∨
1 is an extension of L∨(−D) and M∨ and since Ext1V (L∨(−D),M∨) = 0

we have E∨
1
∼= M∨ ⊕ L∨(−D). Therefore E1 is decomposable. By Lemma 3.2, the

group Aut◦(P(E1))V fixes the section corresponding to E∨
1 → L∨(−D). Then by

Lemma 3.3(1) Aut◦(P(E1))V ≃ H0(V,M∨ ⊗ L(D))⋊Gm
Moreover, by the invariance of V0, the link or birational map ψ : P(E) 99K P(E1)

obtained by Lemma 3.1(3) is Aut◦(P(E))V -equivariant. Since Γ ⊊ H0(V,M∨ ⊗
L(D)) by assumption on D, we have Aut◦(P(E))V ⊊ Aut◦(P(E1))V . This proves
the claim. □

We are now ready to prove the main theorem of this section.

Theorem 5.2. Let n ≥ 2 be a positive integer. Let X be a non-rational and ratio-
nally connected variety carrying a non-trivial conic bundle structure and admitting
a P1-fibration c : X → P2. Set Pn = PX(OX ⊕ c∗OP2(n)). The group Aut◦(Pn) is
not contained in a maximal group of Bir(Pn). More precisely, for every variety W ,
for every Aut◦(Pn)-equivariant birational map W 99K Pn, there is a variety Y and
an Aut◦(Pn)-equivariant birational map W 99K Y with Aut◦(W ) ⊊ Aut◦(Y ).

Proof. Assume that Aut◦(Pn) is contained in a connected algebraic subgroup H of
Bir(Pn) acting rationally on Pn. We will prove that there is a connected algebraic
subgroup G of Bir(Pn) acting rationally on Pn such that H ⊊ G.

By the Weil regularisation theorem [43], there is a variety W birational to Pn
such that H ⊆ Aut◦(W ). By Proposition 4.3, there are smooth varieties Y,Z and
a fibration g : Y → Z with generic fibre P1

C(Z), a birational Aut◦(W )-equivariant
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map W 99K Y and a birational map X 99K Z fitting into a commutative diagram

Pn W Y

X Z

g

By Proposition 2.1, we can assume that Z is smooth and g is a P1-bundle.
We claim the following.

Claim 5.3. The P1-bundle g has an Aut◦(Y )-equivariant section.

Assuming the claim, we finish the proof. Since Z is birational to X, by Propo-
sition 1.9 we have Aut◦(Y ) = Aut◦(Y )Z . Since Aut◦(Pn) ⊆ Aut◦(Y ), there is a
non-trivial additive subgroup of Aut◦(Y ) = Aut◦(Y )Z . By the Claim 5.3, the group
Aut◦(Y ) fixes a section of g. Therefore, by Proposition 5.1, there is a P1-bundle
P(E1) → Z such that Aut◦(Y ) = Aut◦(Y )Z ⊊ Aut◦(P(E1))Z = Aut◦(P(E1)). We
may set G = Aut◦(P(E1)).

We are left with the proof of the Claim 5.3: by Proposition 3.5, if there is no
Aut◦(Y )-equivariant section then Y = Z × P1. Then we would have Aut◦(Y ) ∼=
PGL2(C). But this contradicts the fact that Aut◦(Y ) contains Aut◦(Pn), which
has dimension at least 4 by Lemma 4.2(3). □

6. Proof of Main Theorem

We start with some preliminary lemmas on birational map from products with
special properties.

Lemma 6.1. Let X1 and X2 be normal projective varieties such that h1(Xi,OXi) =
0 for i = 1, 2 and let pi : X1 ×X2 → Xi be the projection onto Xi. Then

Nef(X1 ×X2) = p∗1Nef(X1)⊕ p∗2Nef(X2).

Proof. By [21, Exercise III 12.6(b)] and since h1(Xi,OXi) = 0 for i = 1, 2, we
have Pic(X1 × X2) = p∗1Pic(X1) ⊕ p∗2Pic(X2). Let L ⊂ Nef(X1 × X2) and write
L = p∗1D1 + p∗2D2 for some Di ∈ Pic(Xi), i = 1, 2. Let C1 ⊂ X1 be a curve and

consider the curve Ĉ = C1 × {x2} ⊂ X1 ×X2. Then 0 ≤ L · Ĉ = D1 ·C and hence
D1 is nef. The same argument shows that D2 is nef. □

Proposition 6.2. Let P be a smooth projective variety and Y a homogeneous
variety with ρ(Y ) = 1 and let φ : P × Y 99K Q be an Aut◦(P × Y )-equivariant
birational map. Then Q ≃ P ′ × Y , where P ′ is projective and φ = (φ1, φ2) with
φ1 : P 99K P ′ birational and φ2 : Y → Y an isomorphism.

Proof. Let (p, q) : W → P×Y ×Q be a functorial resolution of the indeterminacies of
φ such that p is a composition of blow-ups of smooth centres. Since p is Aut◦(P×Y )-
equivariant and Y is homogeneous, the morphism p blows up centres that are
products of the form Ci × Y . It follows that W ≃ P̂ × Y and that p = (pP̂ , pY ),
with pP̂ birational and pY an isomorphism.

Since q is a birational morphism, it is induced by a Cartier divisorD on P̂×Y that
is big and nef. By Lemma 6.1, we can write D = p∗

P̂
D1 + p∗YD2 and D1 ∈ Nef(P̂ )

and D2 ∈ Nef(Y ). Then q is of the form q = (f1, f2) : P̂ × Y → P ′ × Y ′, where

f1 : P̂ → P ′ is defined by D1 and f2 : Y → Y1 is defined by D2, and both f1, f2 are
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birational since q is birational (so D1, D2 are nef and big). Since ρ(Y ) = 1 and D2

is nef and big, it follows that D2 is ample and hence that f2 is an isomorphism. □

We are now ready for the proof of our main result.

Theorem 6.3. Let n ≥ 2 and m ≥ 0 be a positive integers. Let X be a non-rational
and rationally connected variety carrying a non-trivial conic bundle structure and
admitting a fibration c : X → P2. Set Pn = PX(OX ⊕ c∗OP2(n)). Then the group
Aut◦(Pn×Pm) is not contained in a maximal connected algebraic group of Bir(Pn×
Pm).

Proof. If m = 0, the statement is Theorem 5.2, so let us assume that m ≥ 1.
Notice that Aut◦(Pn × Pm) ≃ Aut◦(Pn)×Aut(Pm). Assume that Aut◦(Pn × Pm)
is contained in a connected algebraic subgroup H of Bir(Pn×Pm) acting rationally
on Pn×Pm. By Weil regularisation theorem [43], there is a birational map φ : Pn×
Pm 99K V to a variety V such that H ⊆ Aut◦(V ). By Proposition 6.2, we have
V ≃ W × Pm and φ = (φ1, φ2), where φ1 : Pn 99K W is birational and φ2 is an
isomorphism. Notice that Aut◦(V ) ≃ Aut◦(W )×Aut(Pm). By Theorem 5.2, there
exists a variety Y and an Aut◦(W )-equivariant birational map W 99K Y such that
Aut◦(W ) ⊊ Aut◦(Y ) =: G. Then H ⊊ G×Aut(Pm). □

Proof of Main Theorem. The threefold X from [29, Example 2-6] is irrational and
has a fibration X → P2 and X × P3 is rational [1]. In [36] it is shown that already
X × P2 is rational. In particular, Pn × Pm is rational for n ≥ 0 and m ≥ 1. The
claim now follows from Theorem 6.3 applied to the rational variety Y := Pn × Pm
for n ≥ 2 and m ≥ 1, which is of dimension dimY = 4 +m ≥ 5. □

Remark 6.4. We notice that if X is any stably rational and non-rational variety of
dimension 3, and k0 is the smalles positive integer such that X × Pk0 is rational,
then by Theorem 6.3, the group Aut◦(Pn × Pm) is not contained in a maximal
connected algebraic group of Bir(Pm+4) for any m ∈ N such that m+ 4 ≥ k0 + 3.
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