ALGEBRAIC SUBGROUPS OF THE PLANE CREMONA GROUP
OVER A PERFECT FIELD

JULIA SCHNEIDER AND SUSANNA ZIMMERMANN

ABSTRACT. We show that any infinite algebraic subgroup of the plane Cremona group
over a perfect field is contained in a maximal algebraic subgroup of the plane Cremona
group. We classify the maximal groups, and their subgroups of rational points, up to
conjugacy by a birational map.
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1. INTRODUCTION

We study algebraic groups acting birationally and faithfully on a rational smooth pro-
jective surface over a perfect field k. Any choice of birational map from that surface to
the projective plane P? induces an action of the algebraic group on IP? by birational trans-
formations. Its subgroup of rational points can thus be viewed as a subgroup of the plane
Cremona group Biry (P?), which motivates the name algebraic subgroup of Biry(P?). The
full classification - up to conjugacy - of algebraic subgroups of the plane Cremona group is
open over many fields, because classifying the finite algebraic groups is very hard. Here is
a selection of classification results over various perfect fields: [2, 6, 3, 14, 4, 15, 29, 36, 37].
The full classification of maximal algebraic subgroups of Birc(P?) (finite and infinite) can
be found in [5] and the classification of the real locus of infinite algebraic subgroups of
Birg(P?) can be found in [30]. In this article, we restrict ourselves to consider infinite
algebraic subgroups of Biry(P?) over a perfect field k and we classify these groups up to
conjugacy by elements of Biry(P?) and up to inclusion. We also classify their subgroups of
k-rational points up to conjugation by elements of Biry(P?) and up to inclusion. The two
classifications are different as soon as k has a quadratic extension, see Corollary 1.3(2)—(3).
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Let us explain why we work over a perfect field. Given an algebraic subgroup G of
Biry (P?), the strategy is to find a rational, regular and projective surface on which G acts
by automorphisms and then use a G-equivariant Minimal Model Program to arrive on a
conic fibration or a del Pezzo surface. It then remains to describe the automorphism group
of that surface. Over a perfect field k, regular implies smooth, and a smooth projective
surface over k is a smooth projective surface over the algebraic closure k of k equipped
with an action of the Galois group Gal(k/k) of k over k. In particular, the classification
of rational smooth del Pezzo surfaces is simply the classification of Gal(k/k)-actions on
smooth del Pezzo surfaces over k with Gal(k/k)-fixed points. This is straightforward
if they have degree > 6, as we will see in §3 and §4. Over an imperfect field, regular
does not imply smooth and a finite field extension may make appear singularities. The
classification of regular del Pezzo surfaces is still open. In characteristic 2, there are regular,
geometrically non-normal del Pezzo surfaces of degree 6 [16, Proposition 14.3, Proposition
14.5] and there are regular del Pezzo surfaces of degree 2 that are geometrically non-
reduced [26, Proposition 3.4.1]. In particular, we cannot use directly the classification
of regular del Pezzo surfaces over a separably closed field to describe the automorphism
group of regular del Pezzo surfaces over an imperfect field, nor directly the classification
of non-normal del Pezzo surfaces given in [28].

Now, assume again that k is a perfect field. Theorem 1.1, Theorem 1.2, Theorem 1.4
and Corollary 1.3 recover the classification results of [5] and [30] over C and R for infinite
algebraic subgroups, and we will see that these results extend without any surprises over
a perfect field with at least three elements. We leave it up to the reader to decide how
surprising they find the results over the field with two elements.

By a theorem of Rosenlicht and Weil, for any algebraic subgroup G of Biry(P?) there
is a birational map P? --s X to a smooth projective surface X on which G acts by
automorphisms, see Proposition 2.3. It conjugates G to a subgroup of Aut(X), the group
scheme of automorphisms of X, and G(k) is conjugate to a subgroup of Auty(X). For a
conic fibration 7: X — P! we denote by Aut(X,7) = Aut(X) the subgroup preserving
the conic fibration, by Aut(X/7) < Aut(X, ) its subgroup inducing the identity on P!,
and by Auty(X,7) and Auty,(X/7) their k-points. For a Gal(k/k)-invariant collection
pi,--.,pr € X(Kk) of points, we denote by Auty (X, p1,...,p,), resp. Auty (X, {p1,...,pr}),
the subgroup of Auty(X) fixing each p;, resp. preserving the set {p1,...,p.}. A splitting
fieldof {p1, ..., p,} is a finite normal extension L/k of smallest degree such that py,...,p, €
X (L) and such that {py,...,p,} is a union of Gal(L/k)-orbits.

Suppose that k has a quadratic extension L/k and let g be the generator of Gal(L/k) ~
7./2. By Q" we denote the k-structure on P} x P} given by (z,y)? = (y9,29). By SH* we
denote a surface obtained by blowing up QF in a point p of degree 2, where L'/k is the
splitting field of p, whose geometric components are not on the same ruling of P x P}.
We will show in Lemma 4.12 that its isomorphism class depends only on the isomorphism
classes of L, L’. In Theorem 1.1(6b), we denote by E < S“% its exceptional divisor.

Theorem 1.1. Let k be a perfect field and G an infinite algebraic subgroup of Biry(P?).
Then there is a k-birational map P? --+ X that conjugates G to a subgroup of Aut(X),
with X one of the following surfaces, where no indication of the Gal(k/k)-action means
the canonical action.

(1) X =P? and Aut(P?) ~ PGL;
(2) X =Ty and Aut(Fy) ~ Aut(P")? x Z/2 ~ PGL3 xZ/2
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(3) X = QL and Aut(QF) is the k-structure on Aut(P)%2xZ/2 given by the Gal(L/k)-
action (A, B, )9 = (B9, A9, 1), where L/k is a quadratic extension.
(4) X =TF,, n > 2, and the action of Aut(F,,) on P! induces a split exact sequence
1 — Vo — Aut(F,)) — GLy /i, — 1

where p, = {aid | a™ = 1} and V, 11 is a vector space of dimension n + 1.
(5) X is a del Pezzo surface of degree 6 with NS(XE)A‘“E(X) = 1. The action of
Auti(X) on NS(Xy) induces the split exact sequence
1 — (k")? — Autg(X) — Symy xZ/2 — 1.

Moreover, we are in one of the following cases.

(a) Tk NS(X) = 1 and there is a quadratic extension L/k and a birational mor-
phism w: Xp — P2 blowing up a point p = {pi,p2,p3} of degree 3 with
splitting field F over k, and one of the following cases holds:

(i) Gal(F/k) ~ Z/3 and the action of Auty(X) on NS(X) induces the split
exact sequence

1 — AutL(IP’2,]91,])27pg)”("'al(L/k)”_1 — Auty (X)) — Z/6 > 1

(i) Gal(F/k) ~ Symy and the action of Autk(X) on NS(X) induces the
split exact sequence

1 — AutL(P2,pl,pg,pg)WGal(L/k)ﬁ_l —> Autk(X) —> Z/2 — 1,

(b) Tk NS(X) = 2, rk NS(X)Au(X) = 1 and X is one of the following:
(i) X is the blow-up of P? in the coordinate points, and the action of
Auty (X) on NS(X) induces the split exact sequence
1 — (k*)? — Auty(X) — Sym; xZ/2 — 1.

(7i) X is the blow-up of Fy in a point p = {(p1,p1), (p2, p2)} of degree 2. The

action of Auty(X) on NS(X) induces the exact sequence,
1 — Auty (P, p1, p2)? — Auty(X) — Symy xZ/2 — 1
which is split if char(k) # 2.

(iii) X is the blow-up of P? in a point p = {p1, p2, p3} of degree 3 with splitting
field L such that Gal(L/k) ~ Z/3. The action of Auty(X) on NS(X)
induces the split exact sequence

1— AUtk(P27p17p27p3) - Autk(X) - Z/6 — 1

(iv) X is the blow-up of P? in a point p = {p1,ps, p3} of degree 3 with splitting
field L such that Gal(L/k) ~ Sym,. The action of Auty(X) on NS(X)
induces the split exact sequence

1— Autk(P2ap17p2ap3) - Autk(X) - Z/2 — 1

where Z)2 is generated by a rotation.

(c) Tk NS(X)Aux(X) = 2 and there is a quadratic extension L/k and a birational
morphism v: X — QF contracting two curves onto rational points py,ps or
one curve onto a point {p1, pa} of degree 2 with splitting field L' /k. The action
of Auty(X) on NS(X) induces the split exact sequence

1 — TE (k) — Auty (X)) — Z/2 x 2)2 — 1
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where v Auty (X)) = Auty (QF, {p1, p2}) and T is the subgroup of Auty (QF, py, ps)
preserving the rulings of QF.
(6) m: X —> P! is one of the following conic fibrations with

rk NS(Xg/P')Autem — pk NS(X /PH)AwXm) — 1 .

(a) X /P is the blow-up of points pi,...,p, € F,, n > 2, contained in a section
S, < F,, with S? = n. The geometric components of the p; are on pairwise dis-
tinct geometric fibres and Y,;_, deg(p;) = 2n. There are split exact sequences

Tfu) 22 Aut(X)
2 ]
1 — Aut(X/mx) —— Awt(X, 7x) — Aut(P',A) — 1

1 — Auty (X /mx) — Autyi (X, 7x) — Aute(PHA) — 1
2 ]
(k*/ (k) 0 22 Auty(X)

where A = w({p1,...,p-}) < P, T} is the split one-dimensional torus and y,,
its subgroup of n'™ roots of unity.

(b) There exist quadratic extensions L and L' of k such that X /P' is the blow-
up of SHY in points pr,....,pr € E, v = 1. The p; are all of even degree,
their geometric components are on pairwise distinct geometric components of
smooth fibres and each geometric component of E contains half of the geomet-
ric components of each p;. There are exact sequences

SO x 7./2 Aut(X)
I I
1 — Aut(X/my) —— Aut(X, 7y)

Aut(PH, A) 1

1 — Aute(X/mx) — Aut(X,7x) — (Dﬁ’L/ x Z,/2) N Auty (P, A) — 1
12 I
SOLL (k) % /2 Auty (X)

with A = n({p1,...,p,}) € P* and SO = {(a,b) € T* | ab = 1}, and

e if L, L' are k-isomorphic, then SOXY (k) ~ {a € L* | aa¥ = 1}
and Dﬁ’L/ ~ {a € k* | @ = A9, X\ € L}, where g is the generator of
Gal(L/k),

e if L, L' are not k-isomorphic, then SOL’LI(k) ~ k* and
DEF ~ (AN € F | Ae KM\ =1}, wherek © F < LI is the inter-
mediate extension such that Gal(F /k) ~ (gq') < Gal(L/k) x Gal(L'/k),
where g, ¢ are the generators of Gal(L/k), Gal(L'/k), respectively.

We consider a family among (3), (5¢), (5a), (5(b)ii), (5(b)iii), (5(b)iv), and (6b) empty
if the point of requested degree or the requested field extension does not exist.

Theorem 1.1(5) is in fact the classification of rational del Pezzo surfaces of degree 6
over k up to isomorphism, and for any of the eight classes there is a field over which a
surface in the class exists, see §4.
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The next theorem lists the conjugacy classes in Birg(P?) of the groups in Theorem 1.
Let G be an affine algebraic group and X /B a G-Mori fibre space (see Definition 2.11). We
call it G-birationally rigid if for any G-equivariant birational map ¢: X --+ X’ to another
G-Mori fibre space X’/B’ we have X’ ~ X. In particular, ¢ Aut(X)e™' = Aut(X’). We
call it G-birationally superrigid if any G-equivariant birational map X --+ X’ to another
G-Mori fibre space X'/B’ is an isomorphism. If we replace G by G(k) everywhere, we
get the notion of G(k)-Mori fibre space, G(k)-birationally rigid and G(k)-birationally
superrigid. The following theorem also shows that G-birationally (super)rigid does not
imply G (k)-birationally (super)rigid.

The del Pezzo surfaces X and the conic fibrations X /P! in Theorem 1.1 are Aut(X)-
Mori fibre spaces, and, except for the del Pezzo surfaces from (5¢), they are also Auty (X)-
Mori fibre spaces.

Theorem 1.2. Let k be a perfect field.

(1) Any del Pezzo surface X and any conic fibration X /P! from Theorem 1.1 is
Aut(X)-birationally superrigid.

(2) Any del Pezzo surface X in Theorem 1.1(1)-(4), (5(b)ii)-(5(b)iv) and any conic
fibration X /P from (6b) is Auty(X)-birationally superrigid.

(3) Let X be a del Pezzo surface from Theorem 1.1(5a).
If |k| = 3, then X is Auty(X)-birationally superrigid.
If |k| = 2, then there is an Auty(X)-equivariant birational map X --+ X', where
X' is the del Pezzo surface from Theorem 1.1(5(b)ii).

(4) Let X be the del Pezzo surface from Theorem 1.1(5(b)i).
If |k| = 3, then X is Auty(X)-birationally superrigid.
If k| = 2, there are Auty(X)-equivariant birational maps X --+ Fg and X --+ X',
where X' is the del Pezzo surface of degree 6 from Theorem 1.1(5(b)ii).

(5) Any conic fibration X /P from Theorem 1.1(6a) is Auty (X)-birationally superrigid
if K*/un(k) is non-trivial. If X*/p, (k) is trivial and X --+ Y is an Auty(X)-
equivariant birational map to a surface Y from Theorem 1.1, thenY ~ X.

We say that an algebraic subgroup G of Biry (P?) is mazimal if it is maximal with respect
to inclusion among the algebraic subgroups of Biry(P?). We say that G(k) is mazimal if
for any algebraic subgroup G’ of Biry (P?) containing G(k), we have G (k) = G'(k).

By Theorem 1.2(4), if |k| = 2 and X is a del Pezzo surface from (5(b)i), then Auty(X)
is not maximal: It is conjugate to a subgroup of Auty(Fy) and this inclusion is strict,
because Auty(X) ~ Symy xZ/2 has 12 elements, whereas Auty(Fy) has 72 elements.
Similarly, Auty(X) is not maximal if X is a del Pezzo surface from (5a) and |k| = 2.

Corollary 1.3. Let k be a perfect field and H an infinite algebraic subgroup of Biry (P?).

(1) Then H is contained in a mazimal algebraic subgroup G of Biry (P?).

(2) Up to conjugation by a birational map, the mazimal infinite algebraic subgroups of
Biry (P?) are precisely the groups Aut(X) in Theorem 1.1. Two mazimal infinite
subgroups Aut(X) and Aut(X') are conjugate by a biratonal map if and only if
X ~ X'

(8) H(k) is mazimal if and only if it is conjugate to one of the Auty(X) from

o (1)-(4), (5(b)ii)~(5(b)iv), (6),

o (5a), (5(b)i) if k| = 3.
Two such groups Auty(X) and Auty(X') are conjugate by a birational map if and
only if X ~ X'.
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Theorem 1.4. Let k be a perfect field. The conjugacy classes of the maximal subgroups
Auty (X) of Birg(P?) from Theorem 1.1 are parametrised by

(1), (2): one point

(3): one point for each k-isomorphism class of quadratic extensions of k

(4): one point for each n = 2

(5(a)i) one point for any pair (L, F') of k-isomorphism classes of quadratic exten-

sions L and Galois extensions F /k with Gal(F/k) ~7Z/3 if k| =3

(5(a)ii): one point for any pair (L, F') of k-isomorphism classes of quadratic ex-

tensions L and Galois extensions F'/k with Gal(F /k) ~ Sym,

(5(b)i): one point if |k| = 3

(5(b)ii): one point for each k-isomorphism class of quadratic extensions of k

(5(b)iii): one point for each k-isomorphism class of Galois extensions F/k with

Gal(F/k) ~7Z/3.

e (5(b)iv): one point for any k-isomorphism class of Galois extensions F/k with
Gal(F'/k) ~ Syms.

e (Ga): for each n = 2 the set of points {p1,...,p,} < P* with >}, deg(p;) = 2n up
to the action of Auty(P!)

e (6b): for eachn =1 and for each pair of k-isomorphism classes of quadratic exten-

sions (L, L"), the set of points {p1,...,p.} < P! of even degree with Y;_, deg(p;) =

2n up to the action of le’Ll(k) X 7/2

We show the following consequence of [33] and [40, 39].

Proposition 1.5. For any perfect field k there is a surjective homomorphism
®: Biry(P?) — >}< Pz,
I

where J is the set of points of degree 2 in P? up to Auty(P?) and I is at least countable.

Ik K] =2, then |I| = [k|.

If k = R (or more generally [k : k] = 2) then the abelianisation map of Birg(IP?) is a
homomorphism as in Proposition 1.5. By [30, Theorem 1.3 any infinite algebraic group
acting on Birg(P?) that has non-trivial image in the abelianisation is a subgroup of the

group in (6b), and this holds also if [k : k] = 2. We will show a slightly more general
statement over perfect fields with [k : k| > 2, for which we need to introduce equivalence
classes of Mori fibre spaces and links of type II.

We call two Mori fibre spaces X /P! and X,/P! equivalent if there is a birational map
X7 --+ X, that preserves the fibration. In particular, if ¢: X; --+ X5 is a link of type II
between Mori fibre spaces X /P! and X,/P!, then these two are equivalent. There is only
one class of Mori fibre spaces birational to the Hirzebruch surface F; [33, Lemmal, because
all rational points in P? are equivalent up to Aut(P?). We denote by Jg the set of classes of
Mori fibre spaces birational to some S“Y, and by J; the set of classes birational to a blow-
up of P? in a point of degree 4 whose geometric components are in general position. We
call two Sarkisov links ¢ and ¢ of type II between conic fibrations equivalent if the conic
fibrations are equivalent and if the base-points of ¢ and ¢’ have the same degree. For a
class C' of equivalent rational Mori fibre spaces, we denote by M (C) the set of equivalence
classes of links of type II between conic fibrations in the class C' whose base-points have
degree > 16.
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Theorem 1.6 ([33, Theorem 3, Theorem 4]). For any perfect field with [k : k] > 2 there
is a mon-trivial homomorphism
(%) U: Birg(P*) — P Z/2+ P z/2) - P Z/z
xeM (Fy) XEM(C XEM

In fact, the homomorphism from Proposition 1.5 for [k : k| > 2 is induced by the one
in Theorem 1.6.

We show that an infinite algebraic group acting birationally on P? is killed by the
homomorphism ¥ unless it is conjugate to a group of automorphisms acting on S*% or
a Hirzebruch surface.

Proposition 1.7. Let k be a perfect field with [k : k] > 2 and let ¥ be the homomorphism
(). Let G be an infinite algebraic subgroup of Biry(P?). Then ¥(G(k)) is of order at most
2 and the following hold.

(1) If U(G(k)) is non-trivial, it is contained in the factor indexed by Fy or C' € Jg and
there is a G-equivariant birational map P?2 --» X that conjugates G to a subgroup
of Aut(X), where X is as in Theorem 1(6a) or (6b), respectively.

(2) Let X /P! be a conic fibration as in Theorem 1.1(6), which is the blow-up of F,,
n =2, or SB in points py, ..., pr. If U(Auty (X)) is non-trivial, it is generated
by the element whose non-zero entries are indexed by the x; that have p; as base-
point, wherei € {1,...,r} is such that deg(p;) = 16 and |{j € {1,...,r} | deg(p;) =
deg(p;)}| is odd.

The analogous statement to Proposition 1.7 with the homomorphism from Proposi-
tion 1.5 for a perfect field k such that [k : k| = 2 can be found in [30].

Acknowledgements. The authors would like to thank Andrea Fanelli for interesting
discussions on algebraic groups over perfect and imperfect fields, and Michel Brion for
his comments on regularisation of birational group actions. They would like to thank the

first referee for his careful reading and for pointing out an issue in earlier versions of
Lemma 7.7 and Lemma 7.22, which lead to the addition of Theorem 1.2(3).

2. SURFACES AND BIRATIONAL GROUP ACTIONS

2.1. Birational actions. Throughout the article, k denotes a perfect field and k an
algebraic closure. By a surface X (or Xx) we mean a smooth projective surface over k
such that X := X Xgpec(k) Spec(k) is irreducible. We denote by X (k) the set of k-rational
points of X. The Galois group Gal(k/k) acts on X Xgpec) Spec(k) through the second
factor. By a point of degree d we mean a Gal(k/k)-orbit p = {p1,...,ps} = X(k) of
cardinality d > 1. The points of degree one are precisely the k-rational points of X. Let
L/k be an algebraic extension of k such that all p; are L-rational points. By the blow up of
p we mean the blow up of these d points, which is a morphism 7: X’ — X defined over k,
with exceptional divisor F = E; + -+ - + E4 where the F; are disjoint (—1)-curves defined
over L, and E? = —d. We call E the exceptional divisor of p. More generally, a birational
map f: X --» X’ is defined over k if and only if the birational map f xid: X --» X is
Gal(k/k)-equivariant. In particular, X ~ X’ if and only if there is a Gal(k/k)-equivariant
isomorphism Xz — X{- (see also [8, §2.4]).

The surface X being projective and geometrically irreducible implies k[ X¢|* = (k)*,
so if X (k) # & we have Pic(Xy) = Pic(Xy)%®%) [32, Lemma 6.3(iii)]. This holds in
particular if X is k-rational, because then it has a k-rational point by the Lang-Nishimura
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theorem. Since numerical equivalence is Gal(k/k)-stable, also algebraic equivalence is, and
hence NS(Xy) = NS(Xi)92&/k) The Gal(k/k)-action on NS(Xi) factors through a finite
group, that is, its action factors through a finite group. Indeed, since Gal(k/k) has only
finite orbits on k, the orbit of any prime divisor of X is finite. Then each generator of the
finitely generated Z-module NS(Xt) has a finite Gal(k/k)-orbit, so the action of Gal(k/k)
on the (finite) union of these orbits factors through a finite group.

If not mentioned otherwise, any surface, curve, point and rational map will be defined
over the perfect field k. By a geometric component of a curve C' (resp. a point p =
{p1,...,pa}), we mean an irreducible component of Cy (resp. one of py, ..., pq).

By Chételet’s theorem, for n > 1 any smooth projective space X over k with X (k) # ¢J
such that Xi ~ P is in fact already isomorphic to P over k. This means in particular
that P2 is the only rational del Pezzo surface of degree 9 and that a smooth curve of genus
0 with rational points is isomorphic to P*.

For a surface X, we denote by Biry(X) its group of birational self-maps and by Auty(X)
the group of k-automorphisms of X, which is the group of k-rational points of a group
scheme Aut(X) that is locally of finite type over k [10, Theorem 7.1.1] with at most
countably many connected components.

An algebraic group G over a perfect field k is a (not necessarily connected) k-group
variety. In particular, G is reduced and hence smooth [10, Proposition 2.1.12]. We have
Gr = G Xgpec(k) Spec(k), on which Gal(k/k) acts through the second factor. The defini-
tion of rational actions of algebraic groups on algebraic varieties goes back to Weil and
Rosenlicht, see [35, 31].

Definition 2.1. We say that an algebraic group G acts birationally on a variety X if

(1) there are open dense subsets U,V < G x X and a birational map
GXX—_')GXXa (gax) =2 (gap(gax))

restricting to a isomorphism U — V and the projection of U and V to the first
factor is surjective onto G, and

(2) ple,-) = idx and p(gh,z) = p(g, p(h,z)) for any g,h € G and z € X such that
p(h,x), p(gh,x) and p(g, p(h,x)) are well defined.

The group G(k) of k-points of G is the subgroup of Gi of elements fixed by the Gal(k/k)-
action, so we have a map G(k) — Birk(X). Definition 2.1(2) implies that it is a homomor-
phism of groups, and Definition 2.1(1) is equivalent to the induced map G (k) — Birg(X),
g — f(g,-) being a so-called morphism, see [7, Definition 2.1, Definition 2.2], usually
denoted by G — Bir(X) by abuse of notation. The notion of morphism from a variety
to Birk(X) goes back to M. Demazure [13] and J.-P. Serre [34].

We say that G is an algebraic subgroup of Biry(X) if G acts birationally on X with
trivial schematic kernel. We say that G acts regularly on X if the birational map in
Definition 2.1(1) is an isomorphism. In that case, G is a subgroup of Aut(X) and we call
X a G-surface.

Let G be an algebraic group acting birationally on surfaces X; and X, by birational
maps p;: G x X; --+» X;, 1 = 1,2 as in Definition 2.1. A birational map f: X; --+ X5 is
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called G-equivariant if the following diagram commutes

G X X1 "7/77177) X1
idefi %f

G X X2 "*pi*’ X2

In particular, if p;: G — Bir(X;) denotes the induced morphism, the following diagram
commutes

G(k) —2— Bire(X;)
N lfofor1
Bil"k(XQ)

The following proposition is proven in [7, §2.6] over an algebraically closed field and its
proof can be generalised over any perfect field.

Proposition 2.2 ([7, §2.6]). Any algebraic subgroup of Biry(P?) is an affine algebraic
group.

The following proposition was proven separately by A. Weil and M. Rosenlicht [35, 31],
but neither of them needed the new model to be smooth nor projective. Modern proofs
can also be found in [25] over any field and in [12, 21] over algebraically closed fields.

Proposition 2.3. Let X be a surface and G be an affine algebraic group acting birationally
on X. Then there exists a G-surface Y and a G-equivariant birational map X --+ Y.
Furthermore, G(k) has finite action on NS(Y').

Proof. By [35, 31], there exists a normal not necessarily projective or smooth G-surface
Y’ and a G-equivariant birational map X --+» Y’. The set Y” of smooth points of Y’ is
G-stable, it is contained in a complete surface, which can be desingularised [24], so Y is
quasi-projective. By [9, Corollary 2.14], Y has a G-equivariant completion Y"”. We now
G-equivariantly desingularise Y” to obtain the smooth projective surface Y [38, 23] (the
sequence of blow-ups and normalisations over k can be done G-equivariantly).

The second claim is classical and for instance shown in [30, Lemma 2.10] over any
perfect field. O

2.2. Minimal surfaces.

Definition 2.4. Let X be a surface, B a point or a smooth curve and 7: X — B a
surjective morphism with connected fibres such that —Kx is m-ample. Wecall7: X — B
a rank r fibration, where r = Tk NS(X/B).

o If B = pt is a point, the surface X is called del Pezzo surface. Then Xi_ is isomor-
phic to IP’% X IP% or to the blow-up of IP’% in at most 8 points in general position.
We call K% the degree of X. Note that 1 < K% < 9.

e If B is a curve, then m: X — B is called conic fibration; the general geometric
fibre of 7 is isomorphic to IP% and a geometric singular fibre of 7 is the union of
two secant (—1)-curves over k. Moreover, if X is rational, then B = P!, see for
instance [33, Lemma 2.4].

o If r =1, then m: X — B is called Mori fibre space.



10 JULIA SCHNEIDER AND SUSANNA ZIMMERMANN

We may write X /B instead of 7: X — B. Let X/B and X'/B’ be conic fibrations. We
say that a birational map ¢: X --+ X' preserves the fibration or is a birational map of
conic fibrations if the diagram

X - X
|
B —=- P

commutes.

For a surface X, we can run the Gal(k/k)-equivariant Minimal Model program on X,
because the action of Gal(k/k) on NS(Xt) is finite. The end result is a Gal(k/k)-Mori
fibre space Y /By as in Definition 2.4, which is equivalent to Y /B being a Mori fibre
space.

Example 2.5.
(1) For n > 0, the Hirzebruch surface F,, is the quotient of the action of (G,,)* on
(A"\{0}) by
(Gm)? x (A{0})* — (A0}, (1. 0), (0, 91, 20, 21) = (1P ™" o, 11, 20, P21).

The class of (o, y1, 20, 21) is denoted by [yo : ¥1; 20 : 21]. The projection m,: F, —
P! given by [yo : y1;20 : 21] = [20 : 21] is a conic fibration and the special section
S_, c I, is given by yy = 0.

(2) Let p and p’ be two points of degree 2 in P? with splitting field L/k and L'/k,
respectively, such that their geometric components are in general position. We
denote by S“" a del Pezzo surface obtained by first blowing up p, p’, and then
contracting the line passing through one of the two points. It has a natural conic
fibration structure S** — P': the fibres are the strict transforms of the conics
in P? passing through the two points.

Lemma 2.6. [33, Lemma 6.11] Let L/k be a finite extension. Let p1,...,ps,q1,--.,q4 €
P2(L) such that the sets {p1,...,ps} and {qi,...,q} are Gal(k/k)-invariant and no three
of the p; and no three of the q; are collinear. Suppose that for any g € Gal(k/k) there
exists o € Symy such that p] = pouy and ¢ = qo@) fori = 1,...,4. Then there exists
a € PGL3(k) such that a(p;) = q; fori=1,...,4.

Remark 2.7. The argument of [33, Lemma 6.11] can be applied to show the following
analogue of Lemma 2.6 on P!: let F'/k be a finite extension and py, p2, p3, 1, G2, q3 € P1(F)
such that the sets {p1, p3, p3} and {q1, g2, g3} are Gal(k/k)-invariant. Suppose that for any
g € Gal(F/k) there exists 0 € Symg such that p} = p,;) and ¢ = g for i = 1,2,3.
Then there exists a € PGLy(k) such that a(p;) = ¢; for i = 1,2, 3.

Lemma 2.8. [33, Remark 6.1, Lemma 6.13] Let m: X — P! be a Mori fibre space and
suppose that X is rational. Then X is isomorphic to a Hirzebruch surface, to a del Pezzo
surface S or to a del Pezzo surface obtained by blowing up a point of degree 4 in P2.

Proposition 2.9. Let X/B be a Mori fibre space. If B is a point, then X is rational if
and only if K% =5 and X (k) # &J.

Proof. Suppose that d := K% > 5 and that X (k) contains a point r. If d = 7, then Xy
contains three (—1)-curves, one of which must be k-rational, contradicting rk NS(X) = 1.
If d = 8 , the blow-up of r is a del Pezzo surface of degree 7, which has two disjoint
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(—1)-curves over k that are either both k-rational or they make up a Gal(k/k)-orbit of
curves. Contracting them induces a birational map over k to a del Pezzo surface of degree
9 with a rational point, which hence is P2. This argument also holds if rk NS(X) = 2.
Let d = 6. If r is contained in a curve of negative self-intersection, then that curve is a
k-rational (—1)-curve, contradicting rk NS(X) = 1. If r is not contained in any curve of
negative self-intersection, the blow-up of r contains a curve with three pairwise disjoint
geometric components of self-intersection —1. Their contraction yields a birational map
X --+ Y, where Y is a del Pezzo surface of degree 8 with a rational point, so Y is rational
by the argument above. If d = 5, then again rk NS(X') = 1 implies that r is not in a (—1)-
curve. After blowing up r we can contract a curve with five pairwise disjoint geometric
components and arrive on a del Pezzo surface of degree 9, which is P? because it has a
rational point.

Let’s prove the converse implication. If X is a rational del Pezzo surface, then X (k) # &
by the Lang-Nishimura theorem. The remaining claim follows from the classification of
Sarkisov links (see definition in Section 7.1) between rational Mori fibre spaces over a
perfect field [19, Theorem 2.6]. Indeed, any birational map between del Pezzo surfaces over
k with Picard rank 1 decomposes into Sarkisov links and automorphisms [19, Theorem
2.5]. The list of Sarkisov links implies the following: for a del Pezzo surface X with
rkNS(X) = 1 and K% < 4, any Sarkisov link X --» Y that is not an isomorphism is to
a del Pezzo surface Y, either of degree K2 < 4 and tk NS(Y) = 1, or of degree K& = 3
and Y carries moreover the structure Y — P! of a Mori fibre space. From the latter, any
Sarkisov link Y --» Z is to a del Pezzo surface Z of degree < 4, either with rk NS(Z) =1
or it preserves the fibration and rk NS(Z) = 2. In particular, X cannot be joined to P? by
a birational map. 0

Lemma 2.10. If X is a del Pezzo surface of degree K% < 5, then Autg(X) is finite.

Proof. 1t suffices to show the claim for k = k. Then X is the blow-up of p1,...,p, € P? in
general position with 7 = 9 — K% > 4. It has finitely many (—1)-curves, say n of them,
and the action of Auty(X) on the set of the (—1)-curves induces an exact sequence

1 — Auty (P?, py, ..., p) — Auty(X) — Sym,, .

Since p1, ..., p, are in general position and r > 4, the group Auty (P2, py,...,p,) is trivial,
which yields the claim. 0

2.3. Relatively minimal surfaces. We now generalise the notion of being a minimal
surface to being minimal relative to the action of an affine algebraic group.

Definition 2.11. Let G be an affine algebraic group, let X be a G-surfaceand 7: X — B
a rank r fibration.
(1) If 7 is G-equivariant and ' := rk NS(Xi/By) 9 Gl&/%) e call m a G-equivariant
rank v’ fibration. If ' = 1 we call it a G-Mori fibre space.
(2) If 7 is G(k)-equivariant and 7 := rk NS(X/B)“® we call 7 a G-equivariant rank
" fibration. If v =1 we call it G(k)-Mori fibre space.

If a rank r fibration X — B is G-equivariant, we have r > " > r’. A G-Mori
fibre space is not necessarily a G(k)-Mori fibre space, since G(k)-equivariant does not
imply G-equivariant. Examples are, for instance, the del Pezzo surfaces in Lemma 4.11
and Lemma 4.9 (see also Theorem 1.1(5¢)), that are Aut(X)-Mori fibre spaces but not
Auty (X)-Mori fibre spaces.
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If G is connected, Blanchard’s Lemma [9, Theorem 7.2.1] implies that a G-Mori fibre
space is a Mori fibre space. However, the affine algebraic groups we are going to work with
are not necessarily connected. All del Pezzo surfaces X of degree 6 in §4 are Aut(X)-Mori
fibre spaces, all but two of them are also Auty (X )-Mori fibre spaces and only two of them
are Mori fibre spaces.

Let GG be an affine algebraic group and X a G-surface. The action p: G x X — X from
Definition 2.1 being defined over k is equivalent to p := p x id: Gy x Xiz — X being
Gal(k/k)-equivariant, i.e. p(g,z)" = p(g", ") for any h € Gal(k/k), g € Gi, v € Xi. We
can therefore see the G-action on X as the (Gal(k/k) x Gy)-action on Xi

(Gal(E/k) X GE) X XE - XE? (h7g7$) — ﬁ(gha xh)
satisfying p(g", ") = p(g, )" for any h € Gal(k/k), g € Gy, v € Xi.

Remark 2.12. Let G be an affine algebraic group and X a G-surface such that Xi
is rational. By Proposition 2.3, the group Gi and hence also the group Gal(k/k) x Gi
has finite action on NS(Xi). We can run the (Gal(k/k) x Gg)-equivariant Minimal Model
program on Xi, and by [20, Example 2.18] the end result is a G-Mori fibre space Y /B. We
then restrict to the G(k)-action on Y and recall that G(k) has finite action on NS(Y") by
Proposition 2.3. Since Y /B is G-equivariant, it is also G(k)-equivariant, and we can run
the G(k)-equivariant Minimal Model Program on Y, whose end result is then a G/(k)-Mori
fibre space.

Let us tidy up the direction for classifying the infinite algebraic subgroups of Biry(P?).

Proposition 2.13. Let G be an infinite algebraic subgroup of Biry(P?). Then there exists
a G-equivariant birational map P? --» X to a G-Mori fibre space X /B that is one of the
following:
(1) B is a point and X ~P? or X is a del Pezzo surface of degree 6 or 8.
(2) B = P! and there exists a birational morphism of conic fibrations X —> SHF or
X — F, for somen = 0.

Proof. By Proposition 2.2, GG is an affine algebraic group. By Proposition 2.3, there is a
G-surface X’ and a G-equivariant birational map ¢: P? --» X’. We now apply the (G x
Gal(k/k))-equivariant Minimal Model Program and obtain a G-equivariant birational
morphism X’ — X to a G-Mori fibre space m: X — B, see Remark 2.12.

If B is a point, then X is a del Pezzo surface. Since G is infinite, Lemma 2.10 implies
that K3 > 6. If K? = 7, then X contains exactly three (—1)-curves, one of which is
Gy x Gal(k/k)-invariant, so X is not a G-Mori fibre space. It follows that K% € {6, 8,9},
and if K% =9, then X ~ P? by Chatelet’s Theorem.

Suppose that B = P'. Then there is a birational morphism X — Y of conic fibrations
onto a Mori fibre space Y /P!. By Lemma 2.8, Y is a Hirzebruch surface, Y ~ S or Y is the
blow-up of P? in a point of degree 4 whose geometric components are in general position.
The latter is a del Pezzo surface of degree 5, so by Lemma 2.10 the group Aut(Y) is
finite, which does not occur under our hypothesis. It follows that ¥ ~ F,, n > 0, or
Y ~ SLL O

Lemma 2.14.

(1) If X is a del Pezzo surface, then Aut(X) is an affine algebraic group.
(2) Let m: X — P! be a conic fibration such that Xi is rational. Then Aut(X,m) is
an affine algebraic group.
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Proof. (1) Let N := h%(—Kx). Then Aut(X) preserves the ample divisor — Ky, thus it is
conjugate via the embedding | — Kx|: X — P¥~! to a closed subgroup of Aut(PV-!) ~
PGLy and is hence affine.

(2) Let G be the schematic kernel of Aut(X,n) — Aut(NS(X)). If D is an ample
divisor on X, it is fixed by G and hence (as above) G is an affine algebraic group. Since
Xi is rational and has the structure of a conic fibration, we have NS(X) ~ Z" for some
n > 2, and it is generated by —Kx, the general fibre and components of the singular
fibres. The (abstract) group H := Aut(X, 7)/G acts faithfully on NS(X), fixes —Kx and
the general fibre and permutes the components of the singular fibres. It follows that H is
isomorphic (as abstract group) to a subgroup of GL,(Z) whose elements have entries in
{0, £1}. Therefore, H is finite and hence Aut(X, ) is an affine algebraic group. O

In particular, if X is a del Pezzo surface, the Gal(k/k)-action on Autg(X) is a k-
structure with fixed locus Auty (X). Similarly, if 7: X — P! is a conic fibration such that
Xi is rational, then the Gal(k/k)-action on Aut(X, ) is a k-structure with fixed locus
Auty (X, 7).

Our goal is to classify algebraic subgroups of Biry(P?) up to conjugacy and inclusion.
Proposition 2.13 and Lemma 2.14 imply that it suffices to classify up to conjugacy and
inclusion the automorphism groups of del Pezzo surfaces of degree 6 and 8 and the auto-
morphism groups of certain conic fibrations.

3. DEL PEZZO SURFACES OF DEGREE &

We now classify the rational del Pezzo surfaces of degree 8. Over an algebraically closed
field, any such surface is isomorphic to the blow-up of P? in a point or to P! x P!. Over R,
there are exactly two rational models of the latter, namely the quadric surfaces given by
w4 2% —y?—2% = 0or w? + 22+ y? —2? = 0 in P3. The first is isomorphic to P} x P, and
the second is the R-form of P& x PL given by (z,y) — (y9,27), where (g) = Gal(C/R).
We now show that the classification is similar over an arbitrary perfect field k.

Definition 3.1. Suppose that k has a quadratic extension L/k. We denote by QL the
k-structure on P} x P} given by ([ug : 1], [vo : v1]) — ([v§ : v¥], [uf : uf]), where g is the
generator of Gal(L/k).

The surface QF is a del Pezzo surface of degree 8 and it is rational by Proposition 2.9
because the point ([1:1],[1:1]) € QF(k).

Lemma 3.2. Let X be a rational del Pezzo surface of degree 8.
(1) We have tk NS(X) = 2 if and only if X ~ Fy or X ~ Fy, and Tk NS(X) =1 if
and only if X ~ QL for some quadratic extension L/k.
(2) X ~ QF if and only if for any p € X (k) there is a birational map X --+ P? that
is the composition of the blow-up of p and the contraction of a curve onto a point
of degree 2 in P? whose splitting field is L.
(3) We have Q* ~ Q¥ if and only if L and L' are k-isomorphic.

Proof. (1-2) The surface Xy is a del Pezzo surface of degree 8 over k and is hence iso-
morphic to PL x PL or to (Fy). In the latter case, the unique (—1)-curve is Gal(k/k)-
invariant, hence X =~ F;. Suppose that Xi is isomorphic to IP% X IP% and consider the
blow-up m: Y — X of X in a rational point p € X (k) (such a point exists by Propo-
sition 2.9). Then Y is a del Pezzo surface of degree 7 and Y- has three (—1)-curves, one
of which is the exceptional divisor over the rational point p. The union of the other two
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(—1)-curves Cy,Cy < Y is preserved by Gal(k/k), and hence their contraction yields a
birational morphism my: Y — P2. If each of C; and O, is preserved by Gal(k/k), then
@ 1= mmy ' P2 s X has two rational base-points. The pencil of lines through each
base-point is sent onto a fibration of X, and Lemma 2.8 implies that X is a Hirzebruch
surface, so X ~ Fy. If C; u Oy is a Gal(k/k)-orbit of curves, then ¢ has a base-point ¢ of
degree 2. By Remark 2.6 we can assume that ¢ is of the form ¢ = {[a; : 1: 0], [az : 1 : 0]},
ai,ay € k. We consider the projection v PZ ——» PL x P away from ¢

Vil iy z] - (v —ary : 2], [z — agy : 2])
U ([ug : ur], [vo = v1]) == [—asuguy + ayvouy : —ugvy + vouy : (a1 — ag)uyvi]

whose inverse 1)~ ! has base-point ([1: 1],[1 : 1]). There exists an isomorphism «: Xi —
P x PL such that ay = 1. Let p be the canonical action of Gal(k/k) on PZ. Then
the action ppp~! on X corresponds to the k-structure X. It follows that the action of
Pyt = a(ppp~)at on PL x PL corresponds to a k-structure isomorphic to X. For any

g € Gal(k/k), we have

([v6 : v7], [ug - wf]), if af = aq

([ug = wf], [vf : of]), if af = as.

Vo™ ([uo = wa], [vo = v1]) — {

If L = k(ay,az), which is a quadratic extension of k, then the generator g of Gal(L/k)
exchanges the geometric components of ¢, so X ~ QF.

(3) The surfaces Q* and Q are isomorphic if and only if there exist birational maps
w: QF ——» P? and ¢': QF --» P? as in (2) and a € Auty(PP?) such that ¢~ 'ay’ is an
isomorphism. This is the case if and only if the base-points of ¢! and (¢’)~! have the
same splitting field. This is equivalent to L and L’ being k-isomorphic. 0

In order to be complete, we now show an isomorphism from QF to a quadratic surface
RE in P3. Later on, we will choose to use or announce claims using coordinates in QF or
in R according to practicality.

Lemma 3.3. Let L = k(ay) be a quadratic extensions of k and let t* + at + a = (t —
ar)(t — ay) € k[t] be the minimal polynomial of ay. The following hold:
(1) Let RY < P} xy 5 be the quadric surface given by WZ = X? +aXY +aY?. Then
P? - RE, [w:y:z2] - [2° 4+ avy + ay® : x2:yz: 27
is birational, and R* is isomorphic to QF.
(2) The map QF — R given by
([uo : u1], [vo : v1]) — [uovo(ar — az) : —asugvy + aguqvg : —uevy + urvg = (a1 — ag)ugvy]
W:X:Y:Zl»([X—aY: Z,[ X —aY : Z]) = ([W: X —aY],[W: X —a,Y])
is an isomorphism over k.
(8) Let pe Q" be a point of degree 2 with splitting field L' = k(b;) whose components
are not on the same ruling of QF. Let t* + bt + b = (t — by)(t — by) € Kk[t] be the
manimal polynomial of by over k.

(a) Then there is an automorphism of QF (resp. R*) that sends p respectively
onto

{([by - 1],[b1 : 1]), ([bg : 1], [b2 - 1])},  {[b3: by :0: 1], [b3 : by : 0 : 1]}
(b) The pencil of (1,1)-curves in QF through p is given in XE by the pencil of
hyperplanes whose equations are A\(W + bX +bZ) + pY =0 for [\ : u] € P
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Proof. (1) The given birational map has a single base-point of degree 2, namely ¢ = {[a; :
1:0],[az : 1:0]}, and it contracts the line z = 0. Its image is the quadric surface R given
by WZ = X? + aXY + aY?, and the inverse map R” --» P? is given by the projection
from [1:0:0:0]. So RY ~ QF by Lemma 3.2(2).

(2) We compose the birational map from (1) and the birational map 1 : P? --+ QF from
the proof of Lemma 3.2(2) whose base-point is {[a; : 1: 0], [az : 1 : 0]}.

(3a) We see from the description of Auty(QF) in Lemma 3.5 that we can assume that p is
not in the ruling of QF passing through ([1: 1],[1 : 1]). The birational map ¢: QL --» P2
from the proof of Lemma 3.2(1) sends p onto a point 1(p) in P? that is not collinear
with {[a; : 1:0],[as : 1:0]}. By Lemma 2.6, there exists an element o € Auty(P?) that
sends ¥(p) onto {[by : 0 : 1],[b2 : 0 : 1]}. Then " tayy € Auty(QF) and sends p onto
{([by = 1],[b1 = 1]), ([b2 : 1], [b2 : 1])}. We use the isomorphism from (2) to compute its
coordinates in RE.

(3b) The pencil of (1,1)-curves through p is sent by ¢: QF --» P? onto the pencil of
conics through through [a; : 1 : 0],[ag : 1 : 0],[by : O : 1],[b : O : 1]. It is given by

A2 + azy + brz + ay? + b2?) + pyz, and corresponds via ¢ to the pencil in the claim. O

Remark 3.4. Let L = k(a;) be a quadratic extension of k and let t* + at + a = (t —
a1)(t — az) € k[t] be the minimal polynomial of a;. Depending on the characteristic of k,
we can assume the values of a to be 0 or 1:

e If the characteristic of k is not 2, then we can assume that a = 0, namely via the
k-isomorphism t — t — a/2.

e If the characteristic of k equals 2, then we can assume that a = 1. Indeed, as we
assume that k is a perfect field, all elements of k are squares, and so a = 0 does
not give an irreducible polynomial over k. The k-isomorphism ¢ — t/a reduces
a#0toa=1

Lemma 3.5. Let L/k be an extension of degree 2 and let g be the generator of Gal(L/k).
The group Aut(QF) ~ Aut(RF) is isomorphic to the k-structure on Aut(P} x P}) ~
Aut(PL)? x {(u,v) = (v,u)) given by the Gal(L/k)-action
(A’ B, T)g = (Bga A9, 7_)7
where A — A9 is the canonical Gal(L/k)-action on Aut(P}). Furthermore,
Auty (RF) ~ Auty (QF) =~ {(A, A9) | Ae PGLy(L)} x (7).

Proof. Since QF is the k-structure on Q¥ ~ P} x P! the Gal(L/k)-action on the algebraic

group
Autz(QF) = Aut(P} x P}) ~ Aut(P})? x (7)

is a k-structure with fixed points Auty(Q¥). The automorphism 7 commutes with ¢, and
we have

(4, B)(¢°,p?) = (A, B)*(p.q)* = ((A, B)(p,q))’ = (Ap, Bq)? = (B'¢’, A%p)
for any (A, B) € Aut(P})? and any (p,q) € Q. It follows that (A4, B)? = (BY, A9). The

group Auty(QF) is isomorphic to the subgroup of elements of Aut(P} x P}) commuting
with Gal(L/k), which yields the remaining claim. O

By the following lemma, whenever we contract a curve onto a point of degree 2 in QF
with splitting field L, we can choose the point conveniently.
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Lemma 3.6.

(1) Let p € QF be a point of degree 2 whose geometric components are not on the
same ruling of Qé ~ IP% X ]P’lE and whose splitting field is L. Then there exists
a € Auty (QF) such that a(p) = {([1:0],[0:1]), ([0 : 1],[1:0])}.
(2) Let r,s € Q"(k) be two rational points not contained in the same ruling of Q%
Then there exists o € Auty(QF) such that a(r) = ([1:0],[1:0]) and a(s) = ([0 :
1],[0: 1]).
Proof. Let g be the generator of Gal(L/k).

(2) We have r = ([a : b],[a? : b7]) and s = ([¢: d],[¢? : d?]) for some a,b,c,d € L, and
ad — cd # 0 because r and s are not on the same ruling of Q). It follows that the map
A: |u:v]— [du— cv: —bu + av] is contained in PGLy(L). Then (A, AY) € Auty(Q) and
it sends respectively r and s onto ([1:0],[1:0]) and ([0: 1], [0 : 1]).

(1) The point p is of the form {([a : b], [c : d]), ([¢9 : 9], [a? : b7])} for some a, b, ¢, d € L,
and ad? — bc? # 0 because its components are not on the same ruling of QF. Tt follows
that the map A defined by [u : v] — [d%u — ¢%v : —bu + av] is contained in PGLy(L).
Then (A, AY) € Auty(QF) and it sends p onto {([1:0],[0: 1]), ([0: 1],[1:0])}. O

Lemma 3.7. Let p = {p1,p2,p3} and q = {q1, g2, q3} be points in QF of degree 3 such that
for any h € Gal(k/k) there exists o € Symy such that pl' = py) and ¢' = gy Suppose
that the geometric components of p (resp. of q) are in pairwise distinct rulings of QF.
Then there exists o € Auty (QL) such that a(p;) = ¢; fori=1,2,3.

Proof. Let g be the generator of Gal(L/k). Since p and ¢ are of degree 3, we have p! = p;
and ¢/ = ¢; for i = 1,2,3, and therefore p; = (a;,a?) and ¢ = (b;,b!), a;,b; € k,
for i = 1,2,3. By hypothesis, for any h € Gal(k/L) there exists o € Sym, such that
(a,af") = pl = ¢ = (bo(iy, b2;))- We apply Remark 2.7 to the Gal(L/L)-invariant
sets {ay, as, as} and {by, by, b3} in P} and to the Gal(L/L)-invariant sets {a{,a$,a3} and
{b1,b9,b4} in P}. There exist A, B € PGLy(L) such that Aa; = b; and Ba! = b! for
i = 1,2,3. Then A% = (Aa;)? = b} = Ba for i = 1,2,3, and therefore B = A9. It

follows that a € Auty(QF). O

4. DEL PEZZO SURFACES OF DEGREE 6

In this section, we classify the rational del Pezzo surfaces of degree 6 over a perfect field
k and describe their automorphism groups.

4.1. Options for rational del Pezzo surfaces of degree 6. Let X be a rational del
Pezzo surface of degree 6. Then Xi is the blow up of three points in IP’%, its (—1)-curves
are the three exceptional divisors and strict transforms of the lines passing through two of
the three points, and they form a hexagon. The hexagon of Xi is Gal(k/k)-invariant. The
Galois group Gal(k/k) acts on the hexagon by symmetries, so we have a homomorphism
of groups
Gal(k/k) - Symy xZ/2 < Aut(NS(X)).

By hezagon of X we mean the hexagon of Xy endowed with it canonical Gal(k/k)-action.
The options for the non-trivial action of p(Gal(k/k)) on the hexagon of X are visualised
in Figure 1.

The groups Aut(X) and Auty(X) act by symmetries on the hexagon of Xi and X,
respectively, which induces homomorphisms

Aut(X) —> Symy xZ/2,  Aut(X) -2 Symy xZ/2.
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FIGURE 1. The Gal(k/k)-actions on the hexagon of a rational del Pezzo
surface of degree 6.

We now go through the cases in Figure 1. We will see that (1), (6), and (8) admit a
birational morphism to P? and that (2), (3), (4), and (5) admit a birational morphism to
QL or Fo.

4.2. The del Pezzo surfaces in Figures 1(1), 1(6), and 1(8). The following state-
ment is classical over algebraically closed fields and is proven analogously over a perfect

field k.

Lemma 4.1. Let X be a del Pezzo surface of degree 6 such that p(Gal(k/k)) = {1} as
indicated in Figure 1(1)

(1) Then X is rational and isomorphic to

{([lwo : @1 : 2], [yo : 1 : ya]) € Pp x Py | moyo = 211 = 22ya}-
(2) The action of Auty(X) on the hexagon of X induces the split exact sequences

1 — Ty, — Aut(X) — Symy xZ/2 — 1, 1 — Tp(k) — Autk(X) 5 Symg xZ/2 — 1
where Ty is a 2-dimensional split torus, Z/2 is generated by the image of

([zo : @1 = wa], [yo 1 91 2 w2]) = ([wo : 91 < w2, [0 : 21 2 a2])
and Syms is generated by the image of

([zo s z1 = @], [yo : y1 = ya]) = ([1 1 @0 = @2, [y1 2 Yo : y2])
(o w1 s 2], [yo - 1 < w2]) = ([wo : w2 2 2], [yo = 92 - ).
(3) X — * is a Auty(X)-Mori fibre space.

Proof. Contracting three disjoint curves in the hexagon of X yields a birational morphism
onto a del Pezzo surface Z of degree 9, and since the images of the three contracted curves
are rational points, we have Z ~ P2, Choosing the three points to be the coordinate points
yields (1). Any element of ker(p) is conjugate via the contraction to an element of Auty (P?)
fixing the coordinate points and vice-versa, so ker(p) ~ Ty(k). The generators given in (2)
can be verified with straightforward calculations. It follows that Auty (X)) acts transitively
on the sides of the hexagon, hence X is an Auty(X)-Mori fibre space. O

Over k, all rational del Pezzo surfaces of degree 6 are isomorphic. Therefore, by Lemma 4.1,
for any del Pezzo surface X of degree 6, we have rk NS(Xi)*"«™) = 1 and hence X is an
Aut(X)-Mori fibre space. Moreover, Aut(X) is a k-structure on (k) » (Symgy xZ/2). We
will however encounter two rational del Pezzo surfaces of degree 6 that are not Auty(X)-
Mori fibre spaces, see Lemma 4.11 and Lemma 4.9.
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Lemma 4.2. Let X be a rational del Pezzo surface of degree 6 such that p(Gal(k/k)) =
Z/3 as indicated in Figure 1(6)

(1) There exists a point p = {p1,pa, p3} in P? of degree 3 with splitting field L such
that Gal(L/k) ~ Z/3 and such that X is isomorphic to the blow-up of P? in p.

(2) X is isomorphic to the graph of a quadratic involution ¢, € Birk(P?) with base-
point p, and any two such surfaces are isomorphic if and only if the corresponding
field extensions are k-isomorphic.

(3) The action of Auty,(X) on the hexagon of X induces a split ezact sequence

1 — Auti(F?, py, 2, ps) — Autic(X) 5 Z/6 = (p(a), 5(8)) — 1
where o is the lift of an element of Auty(P? {p1, p2, p3}) of order 3 and 3 is the

lift of ¢p.
(4) X —> = is an Auty(X)-Mori fibre space.

Proof. (1) The hexagon of X is the union of two curves C; and Cs, each of whose three
geometric components are disjoint. For ¢ = 1,2, the contraction of C; yields a birational
morphism 7;: X — P2 which contracts the curve onto a point of degree 3. By Lemma 2.6
we can assume it is the same point for i = 1,2, which we call p = {p1, p2, p3}. It remains to
see that Gal(L/k) ~ Z/3, where L is any splitting field of p. Since p(Gal(k/k)) ~ Z/3, the
action of Gal(L/k) on {pi, ps2, p3} induces an exact sequence 1 — H —> Gal(L/k) —
Z)3 —> 1. The field L' := {a € L | h(a) = a ¥V h € H} is an intermediate field between
L and k, over which pq, ps, p3 are rational. The minimality of L implies that L' = L and
hence H = {1} [27, Corollary 2.10].

(2) The fact that any two such surfaces X are isomorphic if and only if the respective
field extensions are k-isomorphic follows from Remark 2.6. The map ¢, 1= mom ' €
Bir,(P?) is of degree 2 and p is the base-point of ¢, and oy ! By Lemma 2.6 we can
assume that ¢, has a rational fixed point 7 and that it contracts the line through p;, p;
onto py, where {i,j,k} = {1,2,3}. These conditions imply that ¢, is an involution, and
by construction of ¢,, the surface X is isomorphic to the graph of ¢,,.

(3) The kernel ker(p) is conjugate via m; to the subgroup of Auty(P?) fixing py, p2, ps.
The only non-trivial elements of Sym, xZ/2 commuting with p(Gal(k/k)) are rotations,
so p(Autk (X)) < Z/6. The involution ¢, € Biry(P?) lifts to an automorphism (3 inducing
a rotation of order 2. If (¢) = Z/3, there exists & € Auty(P?) such that a(p;) = po@),
i =1,2,3, and &(r) = r, where r is the fixed point of ¢,, see Lemma 2.6. Then &* and
dpp@ i, are linear and fix r, p1, p2, p3, and hence @ is of order 3 and & and ¢, commute.
The lift « of @ is an automorphism commuting with § and inducing a rotation of order 3.

(4) Since Auty(X) contains an element inducing a rotation of order 6 on the hexagon,
we have rk NS(X)Autx(X) = 1, O

Lemma 4.3. Let X be a rational del Pezzo surface of degree 6 such that p(Gal(k/k)) =
Symg as indicated in Figure 1(8)
(1) There exists a point p = {p1,p2, p3} in P? of degree 3 with splitting field L such
that Gal(L/k) ~ Syms and such that X is isomorphic to the blow-up of P* in p.
(2) X is isomorphic to the graph of a quadratic involution ¢, € Birk(P?) with base-
point p, and any two such surfaces are isomorphic if and only if the corresponding
field extensions are k-isomorphic.
(8) The action of Auty(X) on the hexagon of X induces a split ezact sequence

1 — Auty (P2, py, pa, ps) — Auty(X) D Z/2 = (p(a)) — 1
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where « is the lift of ¢, onto X.
(4) X —> = is an Auty(X)-Mori fibre space.

Proof. (1) and (2) are proven analogously to Lemma 4.2(1) and 4.2(2).

(3) The kernel of p is conjugate to Auty(P? pi,ps,p3) via the birational morphism
X — P? that contracts one curve in the hexagon of X onto p. Any element of Auty(X)
induces a symmetry of the hexagon that commutes with the Gal(k/k)-action on the
hexagon, hence p(Auty (X)) is contained in the factor Z/2 generated by a rotation of
order 2. The quadratic involution ¢, lifts to an automorphism o« of X and p(a) is a
rotation of order 2.

(4) Since p(a) exchanges the two curves in the hexagon, we have rk NS(X)Auth(X) —
1. U

Example 4.4. A del Pezzo surface as in Lemma 4.2 exists: let |k| = 2 and L/k be the
splitting field of p(X) = X® + X + 1, i.e. |L| = 8 Then o: a — a® generates Gal(L/k)
[27, Theorem 6.5]. If ¢ a root of P, then o(¢*) = ¢ and hence the point {[1: ¢ : ¢*],[1 :
C%:C],[1: ¢ 7]} is of degree 3, its components are not collinear and they are cyclically
permuted by o.

Example 4.5. A del Pezzo surface as in Lemma 4.3 exists: let k = Q, ¢ := 25 and
w = €35 . Then L := Q((,w) is a Galois extension of Q of degree 6 and Gal(L/k) ~
Symg is the group of k-isomorphisms of L sending ((,w) respectively to (¢,w), (w(,w),
(¢, w?), (W, w?), (Wi, w), (W¢,w?) [27, Example 2.21]. The point {[¢ : ¢* : 1], [w( : w?¢?:
1], [w?C : w¢? : 1]} is of degree 3, its components are not collinear and any non-trivial
element of Gal(L/k) permutes them non-trivially.

A del Pezzo surfaces as in Lemma 4.3 cannot exist over a finite field, because Galois
groups of finite extensions of finite fields are always cyclic.

4.3. The del Pezzo surface in Figures 1(7) and 1(9). Recall that the two del Pezzo
surfaces of degree 6 in Lemma 4.2 and Lemma 4.3 are the blow-up of a point p € P? of
degree 3.

Lemma 4.6. Let X be a rational del Pezzo surface with p(Gal(k/k)) = Z/6 as in Fig-
ure 1(7). Then X — = is a Mori fibre space and

(1) there exists a quadratic extension L/k such that Xp is isomorphic to the del
Pezzo surface of degree 6 from Lemma 4.2 (see Figure 1(5)), which is the blow-up
7 X; —> P2 of a point p = {p1, s, p3} of degree 3 with splitting field F' such that
Gal(F/k) ~ Z/3.

(2) © Gal(L/k)7~! acts rationally on P2%; it is not defined at p, sends a general line
onto a conic through p and acts on Auty,(P% {p1, p2, p3}) by conjugation.

(3) Any two such surfaces are isomorphic if and only if the corresponding field exten-
sions of degree two and three are K-isomorphic.

(4) The action of Auty,(X) on the hexagon of X induces a split ezact sequence

] — AU-tL(P27p17p27p3)7rGal(L/k)7r_l - AUtk(X) - Z/6 = <ﬁ(0&), 16(7.‘-_1%0177()> - 1

where o is the lift of an element in Auty (P2, {py, pa, p3})™ CER™" of order 3 and
op € Birp(P?) a quadratic involution with base-point p.

Proof. All (—1)-curves of Xi are in the same Gal(k/k)-orbit and hence X — = is a Mori
fibre space.

(1) Since X is rational, it contains a rational point r € X(k), see Proposition 2.9,
which is in particular not contained in the hexagon of X. Let n;: Y — X be its blow-up
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and E, its exceptional divisor. Then Y- contains an orbit of three (—1)-curves Cy, Cy, Cs
intersecting FE,., each intersecting two opposite sides of the hexagon. The contraction of
C = (7 u Cy u (5 yields a birational morphism 7y: Y — Z onto a rational del Pezzo
surface of degree 8. The birational map 1,1, * conjugates the Gal(k/k)-action on Z to an
action that exchanges the fibrations of Z and hence Z ~ Q% for some quadratic extension
L/k, by Lemma 3.2(1). Figure 2 shows the action of p(Gal(k/k)) on the image by non; !
of the hexagon of X. Then nyn; ! conjugates the Gal(k/L)-action on QF to an action on

/A C . <\ ///
2 4

X Re Z ~ oF

FIGURE 2. The Gal(k/k)-action on Z ~ QL.

’ET’

the hexagon with p(Gal(k/L)) = Z/3. Lemma 4.2 implies (1).

(3) By Lemma 3.7, Aut,(QF) acts transitively on the set of points of degree 3 in QF
with k-isomorphic splitting fields and whose geometric components are in general position.
This yields the claim.

(2) Write Gal(L/k) = {g). Then g exchanges opposite edges of the hexagon and thus
py i= mgm ! acts rationally on P?; it is not defined at p, contracts the lines through any
two of pi,ps, p3 onto the third of these three and it sends a general line onto a conic
through p. It follows that for 8 € Auty (P2, {p1, p2,ps}) the map p,Bp, is contained in
Auty (P?) and preserves {pi1, ps, p3}-

(4) The automorphisms of X are the automorphisms of Xi- commuting with the Gal(k/k)-
action, hence p(Auty (X)) € Z/6. Since X is rational, Gal(L/k) has a fixed point r € X (k).
Let ¢, € Biry(P?) be the quadratic involution from Lemma 4.2(3) such that ®, :=
7 p,m € Auty(X) induces a rotation of order 2 on the hexagon of X . By Lemma 2.6, we
can assume that o, fixes (r) € P*(L). Then ®,9P,g € Auty(X), preserves the edges of
the hexagon and fixes r. It therefore descends to an element of Autr (P?, py, p2, p3) fixing r
and is hence equal to the identity. It follows that ®, € Autx(X). By Lemma 4.2(3), there
is an element of & € Auty (P2, {p1, p2, p3}) of order 3 inducing a rotation of order 3 on the
hexagon of X, and again we can assume that it fixes w(r) € P?(L). We argue as above
that o« := 7~ tam € Auty(X), and it follows that the sequence is split. Finally, any element
of ker(p) preserves each edge of the hexagon and is therefore conjugate by 7 to an element
of Autr (P2, p1,p2,p3) commuting with p,, and any element of Auty(P? py,pa, p3)?e lifts
to an element of ker(p). O

Lemma 4.7. Let X be a rational del Pezzo surface with p(Gal(k/k)) = Syms xZ/2 as in
Figure 1(9). Then X — = is a Mori fibre space and

(1) there exists a quadratic extension L/k such that Xp is isomorphic to the del
Pezzo surface of degree 6 from Lemma 4.3 (see Figure 1(7)), which is the blow-up
7. Xp — P2 of a point p = {p1, v, p3} of degree 3 with splitting field F such that
Gal(F/k) ~ Sym,.

(2) mGal(L/k)m~! acts rationally on P?; it is not defined at p, sends a general line
onto a conic through p and acts on Auty(P%, {p1, p2, p3}) by conjugation.

(8) Any two such surfaces are isomorphic if and only if the corresponding field exten-
stons of degree two and siz are k-isomorphic.
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(4) The action of Auty(X) on the hexagon of X induces a split exact sequence
1 — Auty (P2, py, pa, ps)" CFOT s Auty (X) — Z/2 = (P Lppm)) — 1,
where @, € Biry(P?) is a quadratic involution with base-point p.
Proof. This is proven analogously to Lemma 4.6. 0

Example 4.8. Rational del Pezzo surfaces of degree 6 over k as in Lemma 4.6 and
Lemma, 3.2 exist: in Example 4.4 and Example 4.5, there is a point p € P? of degree 3 with a
splitting field F'/k that is Galois over k such that Gal(F/k) ~ Z/3 or Gal(F/k) ~ Syms,
and the blow-up 7: Y — P? of p is a rational del Pezzo surface of degree 6 as in
Figure 1(6) or (8). The point p is also a point of degree 3 in P2 with splitting field F'L/L
because Gal(F'L/L) ~ Gal(F/k) [27, Theorem 5.5].

By Lemma 4.2(2) and Lemma 4.3(2) there exists a quadratic involution ¢, € Biry(P?)
such that ® := 7 '¢,m € Auty(Y) induces a rotation of order 2. By Lemma 2.6, we can
assume that o, has a rational fixed point r € P?(k). Let g be the generator of Gal(L/k)
and define ¢, := Pog = go®. The group (¢,) acts on Y, with fixed point 7*(r) € Y, (L)
and it induces a rotation of order 2 on the hexagon of Y. It follows that Gal(L/k) ~ (¢,)
defines a k-structure X on Y7, which is rational by Proposition 2.9. It follows that the
group Gal(k/k) acts on the hexagon of Y, by Z/6 or by Symg xZ/2.

4.4. The del Pezzo surfaces in Figures 1(3) and 1(4).

Lemma 4.9. Let X be a del Pezzo surface of degree 6 such that p(Gal(k/k)) is generated
by a reflection as indicated in Figure 1(3). Then X is rational and

(1) there is a quadratic extension L/k and a birational morphism n: X — QF con-
tracting the two k-rational curves in the hexagon onto p; = ([1 : 0],[1 : 0]) and
pe = ([0:1],[0:1]).

(2) Any two such surfaces are isomorphic if and only if the respective quadratic exten-
stons are k-isomorphic.

(8) The action of Auty(X) on the hexagon of X induces a split ezact sequence

1 — Tt (k) — Auti(X) 5 (5(a)) x (H(B)) — 1,

where nTE(k)n~! < Auty (QF, p1, o) is the subgroup preserving the ruling of QF,
and the automorphisms «: (u,v) — (%, %) and B: (u,v) — (%, %)

(4) Tk NS(X)Au(X) = 2 and n Auty (X))~ = Aut(QF, {p1, p2}). In particular, X —>
« is not an Auty(X)-Mori fibre space.

Proof. (1) The hexagon of X has exactly two k-rational curves Cy, Cy, which are moreover
disjoint. Their contraction yields a birational morphism n: X — Z onto a del Pezzo
surface Z of degree 8 with two rational points. By Proposition 2.9, Z is rational and
by Lemma 3.2(1) we have Z ~ QL. We can assume that C},Cy are contracted onto
p1=([1:0],[1:0]) and po = ([0: 1],[0 : 1]) by Lemma 3.6(2).

(2) Any two rational points on QF that are not on the same ruling of QF can be sent
onto each other by an element of Auty(QF) by Lemma 3.6(2). It follows that any two
del Pezzo surfaces satisfying our hypothesis are isomorphic if and only if they have a
birational contraction to isomorphic del Pezzo surfaces QF and oY of degree 8. This is
the case if and only if L and L’ are k-isomorphic by Lemma 3.2(3).

(3) The kernel of j is the subgroup of Auty(X) of elements preserving Cy, Cy and hence
its conjugate nker(p)n~! = Auty(QF, p1, p2) is the subgroup preserving the rulings of QF.
The only non-trivial automorphisms of X commuting with the Gal(k/k)-action induce
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a rotation of order 2 or a reflection that preserves C; u Cs. Let L/k be an extension
of degree 2 such that QF ~ P! x PL. The involution o € Auty(QF) exchanges pi,po
and the rulings of QF, it thus lifts to an automorphism of X inducing a reflection. The
involution 3 € Auty(QF) exchanges pi,p, and preserves the rulings of QF, it thus lifts
to an involution of X inducing a rotation of order 2 on the hexagon. The involutions
a, B € Auty(QF) commute, hence their lifts commute, which yields the splitness of the
sequence.

(4) It follows from (3) that any automorphism of X preserves C; u Cy, and since
n~tan € Auty(X) exchanges C}, Cy, we have tk NS(X)Au(X) = 2, O

The R-version of Lemma 4.9(3) in [30, Proposition 3.4] states that the kernel is SO(R),
but it should be Tp(R) ~ SO(R) x Reo.

Lemma 4.10. Let X be a rational del Pezzo surface of degree 6 such that p(Gal(k/k))
is generated by a rotation of order 2 as indicated in Figure 1(4). Then there exists a
quadratic extension L = k(ay) of k such that

(1) X is isomorphic to the blow-up of Fy in the point {[ay : 1;a; : 1], [az : 1;a9 : 1]} of
degree 2 and

X =~ {([ug : ur], [vo : v1], [wo : wi]) € (PY)? | woa(ugvo + auyvy + auivr) = wi (uvy — 21v0) }

where t*> + at + a = (t — a1)(t — ao) € k[t] is the minimal polynomial of a; over k.

(2) Any two such surfaces are isomorphic if and only if the respective quadratic exten-

stons are k-isomorphic.
(3) The action of Auty(X) on the hexagon induces an exact sequence,

1— Autk(]P)laplvp2>2 - Autk(X) _ﬁ> SymS XZ/2 - ]-7

which is split if char(k) # 2, Z/2 = (p(&)) and Symz = {(p(f), p(@)), where &, B, @
are the lifts of the involutions of Fy

a: [yo:y1;20 0 21) —lyo + ayr : —y1; 20 + azy - —2z1],
B lyo :y1520 : 21] =20 0 21590 1],
V1 [Yo 1 y1s 20 0 21] =2 [yo + ayr © —y1;@(Y120 — Yo21) : Yoo + ayoz1 + ayrz1].
(4) X — = is an Auty(X)-Mori fibre space.

Proof. (1) Let Cy,C5, C5 be the curves in the hexagon of X. By Lemma 3.2(1), for i =
1,2, 3, there is a birational morphism m;: X — Fy contracting C; onto a point of degree
2. Let L/k be a quadratic extension such that Gal(L/k) acts by the rotation of order
2. Then Gal(k/L) preserves each Cj, hence L is the splitting field of each C;. So, L is
also the splitting field of each m;(C;). Let L = k(ay) for some a; € L. For i = 1,2,3 we
write m;(C;) = {[bi1 : 1;bi2 = 1], [biz = 1;b44 : 1]} for some by, ..., by € L. Since the two
components of m;(C;) are not contained in the same fibre of Fy, Remark 2.7 implies that
there is A; € PGLy(k) that sends [b; : 1], [bi3 : 1] onto [ay : 1], [as : 1]. Similarly, there is
B; € PGLy(k) that sends [bs : 1], [bis : 1] onto [a; : 1], [az : 1]. Up to changing the rulings
on [y, we can assume that ¢ := momy*: Fy --» Fy preserves the ruling given by the first
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projection, as indicated in the following commutative diagram.

IF() D2

Up to an isomorphism of the first factor, we can assume that ¢ induces the identity map
on P!. It then sends a general fibre f of the second projection onto a curve of bidegree
(1,1) passing through ¢, which is given by A(yoz1 — y120) + 1(y020 + ay1 20 + ayiz1) = 0 for
some [\ : u] € PL. So, up to left-composition by an automorphism of the second factor, ¢
is the involution given by

©: (Yo y1; 20 1 21] F-2 [Yo : y1sa(yoz1 — Y120) © Yozo + ay1zo + ayiz1].
By construction of (, X is isomorphic to its graph inside (P')%. The projection forgetting
the third factor induces the isomorphism in (1).

(2) As indicated in (1), any two points of degree 2 in [Fy whose geometric components
are not in the same ruling can be sent onto each other by an element of Auty(Fy). It
follows that two del Pezzo surfaces X and X’ satisfying the hypothesis of our lemma are
isomorphic if and only if there are contractions X — Fy and X’ — F, that contract
a curve in each hexagon onto points with k-isomorphic splitting fields. This is equivalent
to contracted curves having k-isomorphic splitting fields.

(3) The group 7 ker(p)w; ! is the subgroup of Auty(F,) fixing [a; : 1;a; : 1] for
i = 1,2 and preserving the fibration given by the first projection, hence m; ker(p)m ' ~
Auty (P!, [a; : 1], [as : 1])%. The involution o € Auty(Fy) (it is not the identity map by
Remark 3.4) preserves the fibrations of Fy and exchanges [a; : 1;a, : 1] and [ag : 1; a9 : 1].
Thus it lifts to an involution & € Auty(X) inducing a rotation of order 2 on the hexagon.
The involution 5 € Auty(Fy) exchanges the fibrations of Fy and fixes [a; : 1;a; : 1] for
i = 1,2, thus lifts to an involution 3 € Auty (X)) inducing the reflection at the axis through
C;. We check that ¢ := ¢ o . Since ¢ induces the reflection on the hexagon that ex-
changes the components of C3, ¥ induces the reflection preserving each component of Cs.
It follows that the sequence is exact. If char(k) # 2, we have a = 0, and then ¢ is an
involution, o commutes with 8 and 1, and [ o has order 3. It follows that the sequence
is split.

(4) Since Auty (X)) acts transitively on the edges of the hexagon, X — = is an Auty(X)-
Mori fibre space. O

4.5. The del Pezzo surfaces in Figures 1(2) and 1(5). Here, we consider the re-
maining two del Pezzo surfaces of degree 6 from Figure 1. We will see that none of them
is a Auty (X )-Mori fibre space. However, they carry a conic fibration, and we will describe
the automorphism group preserving the fibration in this section, which will be used in the
Section 5.

Lemma 4.11. Let X be a rational del Pezzo surface of degree 6 such that p(Gal(k/k)) is
generated by a reflection as indicated in Figure 1(2). There exists a quadratic extension
L = k(ay)/k such that the following holds:
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(1) There is a birational morphism n: X — RY ~ QL contracting an irreducible E
curve onto the point n(E) = {[a® : a; : 1:0],[a3 : az : 1: 0]} = {p1,p2} of degree
2.

2) X ~{(lw:z:y:z],[u:v]) | v(w+ar + az) = uy} =« RY x P

(8) The action of Autyx(X) on the hexagon of X induces a split exact sequence

1 — THH(k) — Auti(X) > (p(a)) x (p(8)) — 1
where THE(k) < Auty (R, p1,p2) is the subgroup preserving the rulings of RE,
and p(«) is the reflection exchanging the singular fibres and p(f) is a rotation of
order 2 with
nan i fwiziy 2] [wirtay: —y: 2]
oy~

where t* + at + a = (t — a1)(t — as) € k[t] is the minimal polynomial of a; over k.
(4) We have tk NS(X)A"(X) = 2 and n Auty (X)n™' = Auty(R”, {p1, p2}). In partic-
ular, X — = is not an Auty(X)-Mori fibre space.

Jwiziy:z] = w+ a2 +az+ay) —(v+az) -y 2]

Proof. (1) By Lemma 3.2(1), contracting E yields a birational morphism v: X — QF.
The splitting field of the image of E is L, so we can choose v(E) = {([1:0],[0: 1]), ([0 :
1],[1 : 0])} by Lemma 3.6(1). Changing the model of QF with the isomorphism from
Lemma 3.3(2), we get the birational morphism 1: X — RY and n(E) = {[a? : a; : 1:
0], [a3 : as : 1:0]}.

(4) Any element of Auty (X) preserves E. It follows that rk NS(X)2ux(X) = 2 and that
v Aut (X)v=t = Auty (QF, {p1, p2}).

(3) The conjugate vker(p)r—' < Auty(QF, ([1 : 0],[0 : 1]),([0 : 1],[1 : 0])) is the
subgroup preserving the rulings of QF. The only non-trivial symmetries in Sym; xZ/2
commuting with the p(Gal(k/k))-action are the two reflections preserving E and the
rotation of order 2. By Remark 3.4, nan=!,nBn~! are involutions and they commute.
Moreover, they respectively fix and exchange [a? : a; : 1 : 0],[a3 : az : 1 : 0]. Their
conjugates by the isomorphism RY — QF from Lemma 3.3(2) respectively exchange
and preserve the rulings of QF. In particular, they induce the claimed action on the
hexagon of X, thus the sequence is split. [l

Lemma 4.12. Let X be a rational del Pezzo surface of degree 6 such that p(Gal(k/k)) ~
Z)2 x Z)2 is generated by a reflection and a rotation of order 2 as in Figure 1(5). Then
there exist quadratic extensions L = k(ay) and L' = k(by) of k that are not k-isomorphic,
with

Ptat+a=(t—a)(t—ay), t>+bt+b=(t—0b)(t—by)ek[t]

the minimal polynomials of a1, by such that the following hold:

(1) X ~ 8™ and there exists a birational contractionn: X — QF ~ RV contracting
an irreducible curve onto the point {py,pa} = {[bF : by : 0 : 1], [b3 : by : 0 : 1]} of
degree 2.

(2) X ~{([w:z:y:z][u:v]) | v(w + b + bz) = uy} < RY x P!

(3) Two surfaces S™* and SYY' are isomorphic if and only if L, L' are respectively
k-isomorphic to L, L’.

(4) The action of Auty,(X) on the hexagon of X induces a split ezact sequence

1 — TP — Auti(X) 2 (pla)) x (p(B)) — 1
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where THY < Auty (RE, p1,p2) is the subgroup preserving the rulings of R, and
p(a) is the reflection exchanging the singular fibres and p(B) is a rotation of order
2, where

nan b lwiziy iz [wirtay: —y: 2]
Byt [wix iy 2] e [wb(2r + bz +ay) : —(x +b2) : —y: 2]

(5) tk NS(X)Au(X) = 2 and n Auty (X)n~" = Autye (R, {p1,p2}). In particular, X —
* 1s not an Auty(X)-Mori fibre space.

Proof. (1) The hexagon of X contains a unique curve E whose geometric components are
disjoint. The contraction of E yields a birational morphism 7: X — Y to a del Pezzo
surface Y of degree 8, and the figure below shows the induced Gal(k/k)-action on the
image of the hexagon, so Y ~ Q' for some quadratic extension L/k by Lemma 3.2(1).

" /D{ o
X/

We have p(Gal(k/k)) = {1,r, s,7s}, where r is the rotation of order 2 and s is the reflection
preserving the components of E. Then s or sr is the image of the generator g of Gal(L/k).
It follows that the splitting field of p is a quadratic extension L’/k not k-isomorphic to
L such that the generator ¢’ of Gal(L//k) induces the rotation r on the hexagon. We set
L =k(ay) and L' = k(b;y) for some a; € L, by € L'. We can choose the form of p according
to Lemma 3.3(3a).

(2) follows from (1) and Lemma 3.3(3b).

(3) Consider the birational morphism n: S — RL with exceptional curve E.
Suppose that we have SLL' ~ SLL Then E and E' are the unique curves in the hexagon
with only two components. Thus they are defined over the same splitting field over k,
and hence L' ~ L’ over k. It follows that RY ~ R, which implies that L ~ L over k by
Lemma 3.2(3).

(4-5) The group ker(p) =~ nker(p)n~! < Auty(QF, p1, p2) is the subgroup preserving the
rulings of QL. Every element of Auty(X) preserves E because it is the only curve in the
hexagon with only two geometric components, so the elements of Auty(X) act by sym-
metries of order 2, and we have n Auty (X)n™! = Auty(QF, {p1, p2}). The only symmetries
of the hexagon that commute with p(Gal(k/k)) are the two reflections preserving E and
the rotation of order 2. By Remark 3.4, nan™!,n8n~! are involutions and they commute.
Moreover, they respectively fix and exchange [0 : by : 1: 0], [b3 : by : 1 : 0]. We see that
the conjugates of nan=t,nBn~! by the isomorphism R* --+ QF from Lemma 3.3(2) re-
spectively exchange and preserve the rulings of QF. In particular, they induce the claimed
action on the hexagon, thus the sequence is split. 0

X

4.6. The fibration on a rational del Pezzo surface of degree 6 from Figures 1(2)
and 1(5). Let L/k, L'/k be two extensions of degree 2. We can obtain the Mori fibre
space m: SH — P! from Example 2.5(2) as follows: we first blow up the point p, then
contract the line passing through it, which yields a birational map P? --» QF. Since p, p’
are not collinear, the image of p’ in Q" is a proper point and blowing it up yields S“* .
In particular, S**" is one of the del Pezzo surfaces in Figure 1(2) and (5), which are
described in Lemma 4.11 and Lemma 4.12.
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Remark 4.13.

(1) Let L = k(ay) and L’ = k(b;) be two quadratic extensions of k, not necessarily
non-isomorphic over k, and let

P tat+a=(t—a)t—ay), t2+bt+b=(t—b)(t—by)eklt]

be the minimal polynomials of a; and b; over k. Lemma 4.11(2) and Lemma 4.12(2)
imply that

SEY ~ {(lw:z:y: 2], [u:v]) e PP x P! | wz = 2® + azy + ay?, (w + bz + bz)v = uy}
and the fibration 7: S — P! is given by the projection
([w:z:y:z],[u:v]) — [u:v] = [w+ bz + bz : y].

(2) The group Aut(S“%, 1) preserves a unique irreducible curve E in the hexagon of
X that has disjoint geometric components. It induces a morphism

Aut(SEY m) — 7/2,

and we denote by SOXL" < Aut(SEF | x) its kernel.

(3) Via the contraction n: X — QL ~ RE of E onto a point {p1, p»} of degree 2, the
group SO is conjugate to a subgroup of T the subgroup of Aut(Q~, py, ps)
preserving the rulings of QF (see Lemma 4.11(3) and Lemma 4.12(4)).

(4) The image t,s € P!(L) of the singular fibres make up two points of degree 1 if
L, L/ are k-isomorphic, and one point of degree 2 if L, L’ are not k-isomorphic.

Lemma 4.14. Keep the notation of Remark 4.13 and let g be the generator of Gal(L/k).
Then the action of Aut(S“Y /1) on the geometric components of E induces the split exact
sequences

1 — SOLL — Aut(SMY /n) — Z/2 — 1
1 — SOMY (k) — Auty (8YY /1) — Z/2 — 1
where )2 is generated by the image of the involution
([w:z:y:z],[u:v])— (w+b2x +ay +bz): —(x+ay+bz):y: z],[u:v]),
and SOMY ~ {(a, B) e TEY | a8 = 1}, whose k-rational points are given by

(1) either SO** (k) ~ {a € L* | aa? = 1},
(2) or SOPY (k) ~ k* if L, L' are not k-isomorphic.

Proof. The indicated map is the composition of the two commuting involutions «, 8 from
Lemma 4.11(3) and Lemma 4.12(4). In particular, it is an involution (it is not the iden-
tity by Remark 3.4) that induces a reflection on the hexagon exchanging the geometric
components of the singular fibres.

Let us compute the image of SOMY in TLL' | Since this means computing the k-points
of these groups, it suffices to assume that L and L’ are k-isomorphic. We consider QF
as k-structure on P} x P1. By Lemma 3.6(1), we can assume that p; = ([0 : 1],[1 : 0]),
po = ([1:0],]0 : 1]). Then SO is conjugate to a subgroup of the group of diagonal
maps Aut(QY, py,ps). In these coordinates, the fibration 7: S — P! is mapped by
n to the pencil of curves given by cujv; — dugvy = 0, [c : d] € PL. A diagonal element
(o, B) € Aut(QF, py, py) preserves each fibre if and only if af = 1. It follows that SO** =

{(a, ) e T [af =1},
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(1) The k-rational points SO®*(k) form the subgroup of elements in SO (k) that
are fixed by the Gal(L/k)-action, see Lemma 3.5. The generator g € Gal(L/k) acts by
(o, B)9 = (89, 09), see Lemma 3.5. Tt follows that SO** = {(a, ) € TH* | aff = 1},

(2) Suppose that L, L' are not k-isomorphic. Let K := LL'. Then Gal(K /k) ~ Gal(L/k) x
Gal(L'/k). Lemma 3.3(3a) tells us that we can assume that p; = ([by : 1],[b1 : 1]),p2 =
([b2 : 1], [b2 : 1]). We now compute the form of the elements in SO (K): the element

= ((%2 bf) , (bll bf)) e PGLy(K) x PGLy(K).

induces a change of coordinates v: Q% — Q¥ sending ([0 : 1],[1 : 0]), ([1 : 0],[0 : 1])
onto py, pa, respectively. Then SOXL (K) « PGLy(K)? is the subgroup of elements of the
form

(AB) (A, B) :=yo(a, B)ory " = ((bﬂ R a)) ’ (blﬁﬁ—_lbz blliz(—lb_zﬁﬁ)» '

a—1 bQ—Oébl

The group SOXY' (k) is the Gal(K /k)-invariant subgroup of SO®¥ (K). If g is the gener-
ator of Gal(L/k), and ¢’ is the one of Gal(L'/g), then

(A, B)? = (B, A7), (A, B)Y = (A%, BY)
It follows that
SOEY (k) = {(A, B) € PGLy(L')? | (A, B) of the form (AB), a9 =1 = af}
We obtain that 3 € k*, and hence that SO*% (k) ~ k*. d

Lemma 4.15. Keep the notation of Remark /.13 and let g be the generator of Gal(L/k).
Then the action of Aut(S™Y ) on P induces the evact sequences

1 — Aut(SHY /7)) — Aut(SEY | 1) — Aut(PL, {t,s}) ~ Ty x Z/2 — 1
1 — Auty (S8 /) — Auty (S, 7) — DEF x7/2 — 1
where Ty is the 1-dimensional split torus, Z/2 is generated by the image of
([w:z:y:z],[u:v]) = (Jw+ b2z +ay +bz): —(x+bz2) : —y: 2], [u+ abv : —v])
and Dﬁ’L/ < Ti(k) is the subgroup
(1) DE* = {6 e Ty(k) | 6 = AN9, N € L*}, where g is the generator of Gal(L/k),
(2) DEY ~ (AN € F | Ae K, A\ =1} if L and L are not k-isomorphic, where k —

F < LL' is the intermediate extension such that Gal(F/k) ~ (g¢') < Gal(L/k) x
Gal(L'/k), where g,q" are the generators of Gal(L/k), Gal(L'/k), respectively.

Proof. The birational contraction n: S© — Q' induces a rational map #: QF --» P!
such that 7 on = 7. We define

Aut(QF, #) = {a € Aut(QF) | 3f € Aut(P!) such that # oo = f o 7t}

Then Aut(QF,#) = nAut(SHY,7)n~'. Let us compute AutE(Qé,fr). For this, we can
assume that p; = ([0: 1],[1 :0]), p2 = ([1: 0],[0: 1]) (in the notation of Remark 4.13),
and the fibres of # are of the form cujv; — dugvy = 0, [c : d] € PL. It follows that

Autg(PE x PE) 2 Autg(QF, 7) = {(Ax, By) [ A p e K} x(r: (2,) = (3, 2))

where

(e (e
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The automorphism (Ay, B,,) of type (I) induces the scaling [c : d] — [c : Aud] on P,
the one of type (II) induces [c : d] — [d : Auc], and 7 induces idp:. Hence, the image of
Aut(SHY ) in Aut(P, {t, s}) is T} x Z/27Z.

Let us compute Auty(QF, ), its image in Auty (P!, {¢, s}) separately for each of the two
cases L = I/ and L, L' not k-isomorphic. We will use that Q% ~ P} x PL for K = LI,
hence (Ay, B,) € Autg(Qk, #) exactly if A\, u € K.

(1) Suppose that L = L’. Then 7 € Auty(QF¥, #). An element (Ay, B,) € Aut(QF,#)
is defined over k if and only A,pu € L and Ay = B, which is equivalent to u = M.
In that case, A = AN, which is contained in k. Therefore, the image Auty(S™,7) in
Auty (P', {t, s}) is isomorphic to D" x Z,/2.

(2) Suppose that L and L’ are not k-isomorphic. Let K = LL' and Gal(K/k) ~
Gal(L/k) x Gal(L'/k) = (g x {g’). Let us compute Autx(Q%, #). Observe that we have
pi = ([b; : 1], [b; : 1]) for ¢ = 1,2 and that we can no longer assume that they are equal to
([1:0],[0:1]),([0:1],[1:0]). However, the coordinate change given by

7;:(<? ?),(T ?))ePGLﬂK)xPGLﬂK)

sends ([1 : 0],[0 : 1]),([0 : 1],[1 : 0]) onto pi,pe, respectively. One can compute that
the Galois action on QF (see the proof of Lemma 3.2) induced by ~, namely G’ = vy~ !o
Gal(K /k) o7, is given by
([of = vg], [uf = ug])
([wf g ], [of :of ]).
Note that 7 is G'-invariant and so it remains to study which (A, A,) are G’-invariant. So
(A, A,) is defined over k for A, p € K if and only if

(A)\aA[L) = (A)MA,LL)g = (A(;L_l)g7A()\_1)g)

(AMA#) = (A)\,Au)g/ = (A(Afl)gl’A(/Fl)gl)'

([uo : u], [vo : v1]) — {

Hence, the elements of Auty(QF,#) are exactly those of the form o (Ay, A,) oy~! with
M\ e K osatisfying A = (p™ 1), p= A1 A= ()\*1)9/, Q= (,ufl)g/.

Instead of computing the image of Auty(QF, #) in Auty(P!), we compute the image
of vt Auty (QF, #)y (i.e. (Ax, 4,)) on Autg(P') with the induced Galois action on P!,
which is given by ([c: d])? = [d9 : ¢] and ([c: d])? = [d7 : ¢7]. Again, (A), A,) induces
[c:d] — [c: A ud] or [c:d] — [d: Auc], and 7" induces idp1. We compute the possible
0 = Au: On one hand we find

M= (T = () (M) = ()
implying 6 € F, where k ¢ F' ¢ K with Gal(F/k) = {(gg’). On the other hand, we also
have
A= Ap™H)9 = AN
Hence, DEY is conjugated to {M9 € F | Ae K, A\ = 1}. O

In the lemma above, if L, L’ are not k-isomorphic, then le’L/ ~ {Npac(A) | X €
K, Nk/r(A) = 1}, where Np ) and N/, are the field norms of F'/k and K/L, respectively.
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5. THE CONIC FIBRATION CASES

In this section, we classify the rational conic fibrations 7: X — P! that are Aut(X, 7)-
Mori fibre spaces. Recall that 7 induces a homomorphism Aut(X,7) — Aut(P') whose
kernel we denote by Aut(X /7) and its k-points by Auty (X /7).

Recall from Lemma 2.8 that, for any Mori fibre space m: X — P! such that X is
rational, we have either X ~ F, for some n > 0 or X ~ S» or X is isomorphic to a
del Pezzo surface obtained by blowing up P? in a point of degree 4. In the latter case,
Aut(X, 7) is finite by Lemma 2.10, so we do not look at it.

5.1. Conic fibrations obtained by blowing up a Hirzebruch surface. We study
the rational conic fibrations m: X — P! that are Aut(X,)-Mori fibre spaces and for
which there is a birational morphism X — [F,, of conic fibrations for some n > 0.

Remark 5.1. Let n > 1 and denote by k|2, z1], < k[z0, 21] the vector space of homoge-
neous polynomials of degree n. In the coordinates from Example 2.5(1) the special section
S_, I, is given by yo = 0. We denote by S,, < IF,, the section given by y; = 0. Since
S, S_, =0, we have S,, ~ S_,, + nf and S? = n, where f is the class of a fibre. The
automorphism group of I, is

Aut(F,) = Aut(F,,, ) ~ Vo1 @ GLg /e, Autk(F,) ~ K[z, 21]n % GLo(k)/pn (k),

where V},,; is the canonical k-structure on k[zg, 21], and p, = {\-id € GLy | A" = 1}.
The group Auty(F,) acts on F,, by

[yo = Y1320 = 21] = [yo : P(20,21)Y0 + y1; azo + b2y : czo + dz1],
and it has two orbits on F,,, namely S_,, and F,\S_,,.

Lemma 5.2. Letn >0 andn: X — F,, be a birational morphism of conic fibrations that
is mot an isomorphism, and suppose that Autg(X, ) contains an element permuting the
components of at least one singular geometric fibre. Let Gy < Aute(X /) be the subgroup
of elements acting trivially on NS(Xt).

(1) If Gy is non-trivial, there exists N = 1 and a birational morphism X — Fy
of conic fibrations blowing up v = 1 points pi,...,p, contained in Sy such that
Sy deg(pi) = 2N.

(2) If Gy = {1}, then Auty (X /m) ~ (Z/2)" for r € {0,1,2}.

Proof. The claim is proven in [5, Lemme 4.3.5] over C and its proof can be repeated
word by word over any algebraically closed field. Over a perfect field k it suffices to show
that curves contracted by the birational morphism v: Xy — (Fy); in (1) are already
defined over k. Since N > 1, the surface Xi contains exactly two sections of negative
self-intersection, namely the strict transforms S_y and Sy of S_y and S N, respectively,
and 52 = 2 Y = —N, and every singular geometric fibre has two components, each
intersecting either S_n or Sy. We now show that S_y and Sy are both defined over
k, which will then imply that the curves contracted by 7 are defined over k and we are
finished. The birational morphism n: X — IF,, contracts exactly one component in each
singular fibre. This implies that the strict transform S ., of S_, = T, has self-intersection
< —n. If n > 1, then S, is one of Sy or S_y and hence both Sy or S_y are defined
over k. If n = 0, then 7(S_y) and 1(Sy) are sections in Fy of ruling induced by 7. If they
are permuted by an element of Gal(k/k), each fibre contains two points blown-up by 7,
which contradicts X — P! being a conic fibration. It follows that 7(S_y) and 1(Sy) are
both defined over k and hence S_ N, Sy are defined over k as well. ]
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Let us construct a special birational involution of F,,, n > 1.

Example 5.3. Let n > 1. Let py,...,p. € S, < F,, be points such that their geometric
components are in pairwise distinct geometric fibres and Y, deg(p;) = 2n, and assume
that m,(p;) # [0 : 1],[1 : 0] for @ = 1,...,7. Let P; € k[20, 21 deg(p;) De the polynomial
defining 7(p;) € P! and define P := Py --- P, € k|2, 21]2,. Then the map

80: ]Fn -—2 Fn; (3/1721) =2 (P(Zl)/yhzl)

is an involution preserving the fibration, whose base-points are pq, ..., p,, that exchanges
S, and S_,, and contracts the fibres through py,..., p..

We call j1,, = Ty the subgroup of n'® roots of unity of the 1-dimensional standard torus
T).

Lemma 5.4. Letn > 1 and let n: X — F,, be a birational morphism blowing up points
D1, ..., Pr €S, whose geometric components are on pairwise distinct geometric fibres and
such that Y, deg(p;) = 2n. Then m := m,n: X — P! is a conic fibration that has
exactly two (—n)-sections and the following properties hold.

(1) There are split exact sequences
1 — Aut(X /7)) — Aut(X, 1) — Aut(P', A) — 1
1 — Auty (X/7) — Auty (X, 7) — Auty (P, A) — 1

where A < P! is the image of the singular fibres of X /P.
(2) The action of Aut(X/m) on the two (—n)-sections induces split exact sequences

1> H—Aut(X/m) —Z/2 -1,
1 - Hk) — Autx(X/m) — Z/2 > 1

where nHn™ = Aut(F, /7, Sy) ~ Th/p, and nH(k)n™' ~ k*/u,(k), and Z/2 =
(n~Yon) with o: F, --» F, the involution from Ezample 5.3.

(3) Any element of Auty (X /m)\H (k) is an involution fizing an irreducible double cover
of P! branched over A not intersecting S—_,.

(4) m: X — P! is an Aut(X, 7)-Mori fibre space and an Auty (X, 7)-Mori fibre space.

Proof. We denote by S, and S_,, the strict transforms of the sections S, and S_,, of F,, in
X, which satisfy 52 = Sgn = —n and which are the only (geometric) sections of negative
self-intersection. The anti-canonical divisor of X is m-ample because the geometric com-
ponents of the p; are on pairwise distinct geometric fibres, thus 7: X — P! is a conic
fibration with r singular fibres, each of whose geometric components intersects exactly
one of the sections S, and S_,,.

(1) For any element o € Aut(P*, A) there exists & € Aut(F,) preserving {pi,...,p,},
and we have n~'an € Aut(X, 7). The same argument holds for the k-points of these
groups.

(2) Up to an element of Auty(F,), we can assume that m,(p;) # [1 : 0],[0 : 1] for
¢t = 1,...,r. Then the birational involution ¢: F, --» F, from Example 5.3 lifts to an
element of Auty (X /7) and exchanges S, and S_,. It follows that the action of Aut(X /)
on {S,,S_,} induces split exact sequences

1> H— Aut(X/m) — Z/2 -1, and 1— H(k)— Auty(X/7) — Z/2 — 1.

Any element of H fixes S, and S_,, pointwise, so nHn~' and nH (k)n~" are the subgroups
of Aut(F,,/m,) ~ Vi1 x Th/p, and Auty(F, /7,) ~ k|20, 21]n % k*/u,(k), respectively,
fixing S, pointwise. It follows that nHn™' = T/, and nH (k)n~" = k*/pu, (k).
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(4) The fact that the element 7 'pn € Auty (X /7) exchanges the components of every
singular geometric fibre implies that tk NS(X)Aw(X™ = 1. Tt follows that X /P! is an
Auty (X, 7)-Mori fibre space and in particular an Aut(X, m)-Mori fibre space.

(3) For any A € k* the map

()\7 gp) (yla Zl) = ()\"P(zl)/yh Zl)

is a birational involution of F, and fixes the curve yi — \"P(zg,21)y3 = 0, which is a
double cover of P! branched over A and does not intersect the section S_,,. O

Lemma 5.5. Let n > 1 and n: X — F,, be a birational morphism blowing up points
D1, ..., Pr €S, whose geometric components are on pairwise distinct geometric fibres and
such that > ;_, deg(p;) = 2n. Let m = m,n: X —> P! be the induced conic fibration on X .

(1) If n = 1, then X is a del Pezzo surface of degree 6 as in 1(1) or 1(3) and
Aut(X,7) < Aut(X). Moreover, Auty(X,7m) & Auty(X) if X is as in 1(1) and
Auty (X, 7) = Auty(X) if X is as in 1(3).

(2) If n = 2, then Aut(X,7) = Aut(X).

Proof. (1) For n = 1, the conic fibration X /P! has two (—1)-sections and X is a del Pezzo
surface of degree 6 as in Figure 1(1) or Figure 1(3). Lemma 4.1(2) applied to X implies
that Aut(X) contains an element inducing a rotation of order 6 on the hexagon of X, which
is not contained in Aut(X, 7). The same argument implies that Auty (X, 7) & Auty(X) if
X is a del Pezzo surface of degree 6 as in 1(1). However, in the case of Figure 1(3), any
element of Auty(X) preserves the fibration by Lemma 4.9(4).

(2) If n > 2, X contains exactly two (—n)-sections S, and S_,, which are the strict
transforms of S, and S_,. Thus the class S, + S_, in NS(Xy) is Auty(X)-invariant,
hence Kx + (S, + S_,) = —2f is Autg(X)-invariant as well. It follows that Aut(X) =

Aut(X, 7). O

If two conic fibrations as in Lemma 5.4 are isomorphic, they both have a birational
morphism to the same Hirzebruch surface IF,,.

Lemma 5.6. For any fized n > 1, two conic fibrations as in Lemma 5.4 are isomorphic
if and only if the points on P! are the same, up to an element of Auty(P').

Proof. Any element of Auty(P!) lifts to an element of Auty(FF, ), so two such conic fibra-
tions are isomorphic, if and only if the points on the section S, are the same, up to an

element of Auty(FF,,). This means that their images on P! are the same, up to an element
of Auty(P'). O

5.2. Conic fibrations obtained by blowing up a del Pezzo surface. Let L = k(ay)
and L' = k(by) be quadratic extensions of k. In this section, we consider rational conic
fibrations 7: X — P! for which there is a birational morphism 7: X /P! — S™L' /P! of
conic fibrations, where g, 1 : S©Y — P! is the Mori fibre space from Example 2.5(2).
We have described the fibration S“%" — P! in Section 4.6.

Recall from Lemma 4.11(1) and Lemma 4.12(1) that there is a birational morphism
v: SLY — QL contracting a curve E onto a point p’ of degree 2 with splitting field L'

Remark 5.7. Let pe E < S&Y be a point whose geometric components are in distinct
smooth geometric fibres of S“%/P'. Any element of Gal(k/k) exchanges or preserves the
geometric components of the point n(E) and hence of the curve E, and this implies that
deg(p) is even and each geometric component of E contains deg(p) geometric components

2
of p.
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We now show an analogue of Lemma 5.2, that we prove similarly to [5, Lemme 4.3.5].

Lemma 5.8. Let n: X — S™ be a birational morphism of conic fibrations that is
not an isomorphism, and suppose that Auty(X, ) contains an element exchanging the
components of at least one singular geometric fibre. Let Gy < Auty (X /) be the subgroup
acting trivially on NS(Xg).

(1) If Gy is non-trivial, then n is the blow-up of r = 1 points contained in E < Sht
whose geometric components are on pairwise distinct smooth geometric fibres, and
each geometric component of & contains half of the geometric components of each
point.

(2) If Gy = {1}, then Auty(X/m) ~ (Z/2)" for r € {0,1,2}.

Proof. (1) Suppose that Gy is nontrivial. It preserves the geometric components of the
singular fibres, so 7 is Gg-equivariant and R := nGn~' < AutE(SEL’L, /Tsr.1r). The group

R fixes the geometric components of E pointwise. Since R = PGLy(k(x)) and since it is
non-trivial, it fixes no other sections of SEL’L /P!, So, Gy fixes the geometric components

of the strict transform £ ¢ X of E and no other sections of X;/]P’lﬁ. Moreover, Auty (X, 7)
contains an element exchanging the components of at least one singular geometric fibre,
so it follows that each geometric component of E intersects exactly one component of
each geometric singular fibre. In particular, the points blown-up by n are contained in
E. The hypothesis that —Kx is m-ample implies that the geometric components of the
blown-up points are on distinct geometric components of smooth fibres. The remaining
claim follows from Remark 5.7.

(2) If Gy is trivial, then every non-trivial element of Auty(X/7) is an involution and

the claim follows from the fact that Aut(X /) < PGLy(k(z)). O

Example 5.9. Let us construct a special birational involution of ¢, 1, of SHY that
preserves the fibration S»* — P! and induces the identity on P

Let Ey, Es be the geometric components of E. If ¢’ is the generator of Gal(L'/k),
then EY = Ey. Let py,...,p, € E ¢ SEY be points whose geometric components are on
pairwise distinct smooth geometric fibres. We now construct an involution ¢ of S®* whose
base-points are py,...,p, and which exchanges E; and Fs. For i = 1,2, let P, € L[z, y]
be homogeneous polynomials defining the set of components of the py,...,p,. contained
in E;. Consider a birational morphism S“* — QF that contracts E, and consider the
model of QF that is a k-structure on P} x PL.

e If L and L’ are k-isomorphic, we can assume that the images of E; and Ey are
respectively ([1:0],[0:1]) and ([0: 1],[1:0]), by Lemma 3.6(1). We define

Gr.r: ([uo : ui], [vo = v1]) =

([Uopl(uovmuwﬂ : U1P2(U07)07U1U1)]7 [UOP2<UOU07 U17J1) : U1P1(U0U0, le)])-

e If L and L' are not k-isomorphic, we write L' = k(b;). By Lemma 3.3(3a), we
can assume that the images of Ey, Fy are ([by : 1],[b1 @ 1]), ([b2 : 1], [b2 : 1]). To
compute ¢y, 1/, we simply conjugate ¢y, 1, over k with

= ((bf bf) , <611 bf)) € PGLy(k) x PGLy(k)

This yields the following form of ¢y, 1
or.r: ([uo s u], [vo s vi]) = ([voU + 01V i voW — 0 U], [ugU + uiV 2 ugW — u U])
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where
U:= bgpl(t, S) — blpg(t, S), V.= b%pg(t,S) — bgpl(t,S), W .= Pl(t, S) — Pg(t,S)
with
t:= (UO — blul)(vg — bQUl), S = (UO — bg’Ul)(Uo — blvl).
In both cases, ¢ ;» commutes with Gal(L/k) and Gal(L'/k) and it is an involution.
Moreover, it preserves the image of the fibration S** — P! in Q% and induces the
identity map on P!. The base-locus of @ L in Q! is the image of E, and ©r,1v contracts

the image of the fibres of S®* — P! given by P, P, = 0. It follows that ¢y 1/ lifts to a
birational involution ¢y, ;- not defined in py, ..., p,.

Lemma 5.10. Let n: X — SYY be the blow-up up of points pr,...,pr € E, 7 = 1,

whose geometric components are on pairwise distinct smooth geometric fibres. Then m :=

nsn: X —> P! is a conic fibration and deg(p;) is even and each geometric component of
deg(p:)

E contains === geometric components for i =1,...,r. Moreover, the following hold.

(1) The action of Aut(X, ) on P! induces the exact sequence
1 — Aut(X /7)) — Aut(X, 7) — Aut(P', A) — 1
1 — Auty (X /7) — Auty (X, 7) — (DEY % Z/2) A Auty (P', A) — 1

where Dﬁ’L/ x 7,/2 is the image of Auty(S™Y 1) in Auty(P'), see Lemma 4.15,
and A < P! is the image of the singular fibres of X .

(2) The Aut(X /m)-action on the components of the strict transform of E induces the
split exact sequences

1 > H— Auwt(X/r) — Z/2 — 1,
1 — H(k) —> Auty(X /1) —> Z/2 — 1

with nHn™! = soLt from Lemma 4.14 and Z/2 is generated by the involution
oL, S -5 SBL from Ezample 5.9.

(3) Any element of Auty (X /m)\H (k) is an involution fizing an irreducible double cover
of P! branched over A.

(4) m: X —> P! is an Aut(X, 7)-Mori fibre space and an Auty (X, 7)-Mori fibre space.

Proof. The first claim follows from Remark 5.7 and the sequences in (1) are exact by
Lemma 4.14.

(2) Consider the involution ¢y, 1 : SH* -—» SHL from Example 5.9 whose base-points
are py, . .., p, and that exchanges the geometric components of E. Then ¢r, 1 := n~ oL 11
is contained in Auty(X /7) and exchanges the geometric components of the strict trans-
form E of E. In particular, the Aut(X /r)-action on the set of geometric components of £
induces split exact sequences as claimed. The groups H and H (k) are respectively conju-
gate by 7 to the subgroups of Aut(S»" /ns) and Auty (S™!' /ms) preserving the geometric
components of E, which are SO and SOX* (k) by Lemma 4.14.

(3) It is enough to show that this is already the case for any element in Aut(X /m)\H (k).
Indeed, we have Aut (X /m) ~ H(k) x Z/2, and any element of Autg(X /m)\H (k) is of
the form (p~'om, ¢1.1/), where o := (a,a~') € SO® (k). Using Example 5.9, we compute
that (p~'am, ¢r,1/) is an involution. Its fixed k-curve in Qﬁ is given by

augvy Pa(upvo, u1v1) — w09 Py (ugvg, ugvy) = 0

which lifts to the desired curve on Xi.
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(4) The involution ¢ exchanges the geometric components of all singular fibres and
hence X — P! is a Aut(X, P')-Mori fibre space and an Auty (X, P')-Mori fibre space. [

Lemma 5.11. Let n: X — S“Y be the blow-up up of points py,...,p, € E, r =1, whose
geometric components are on pairwise distinct smooth geometric fibres. Then Aut(X,m) =

Aut(X).

Proof. By Remark 5.7, each of the components of E contains half the geometric compo-
nents of each p;. It follows that n := %Z;l deg(p;) e Zandn>1.Fori=1,...,r let E;
be the exceptional divisor of p; and let f be a general fibre of X and E the strict transform
of E. We have Ks = —2f — E and hence Ky = —2f —m*E+ Ey +---+ E, = —2f — E.

The curve E is the unique curve in X with self-intersection E? = —2(1 +n) < —4 and
hence it is Aut(X)-invariant. In particular, Ky + F = —2f is Aut(X)-invariant. It follows
that Aut(X) = Aut(X, 7). O

Lemma 5.12. Two conic fibrations as in Lemma 5.10 are isomorphic as conic fibrations

if and only if the points on P! are the same, up to an element of Dﬁ’LI X 7,2, which is
the image of Auty(S™" 1) in Auty(P') (see Lemma 4.15).

Proof. Let X — S™" and X’ — S™! be such conic fibrations obtained by blowing up
p1,---,0r € Eand pl, ..., p. < E, respectively, and suppose that they are isomorphic as
conic fibrations. Then this isomorphism sends the singular fibres of X onto the ones of
X', and hence descends to an automorphism of P! that sends the images of the p; onto
the images of the p!.

On the other hand, given an automorphism « of P! contained in le L 7,2, we know
by Lemma 5.10 there exists an automorphism ¢ of X that induces o on P!. If o sends the
p; onto the pl, then either 1) or ¢ o ¢ sends the p; onto the p}, where ¢ is the generator of
Z/2 < Auty (X /) in Lemma 5.10(2) exchanging the components of the singular fibres. [J

6. THE PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1.

Lemma 6.1. Consider a birational morphism of conic fibrations X — F,, for some
n = 0, and suppose that X /P has at most two singular geometric fibres. If there is an
element of Aut(X, ) that permutes the components of at least one singular geometric
fibre, then it has exactly two singular geometric fibres and X is a del Pezzo surface of
degree 6.

Proof. Denote by n: X — T, the birational morphism. Let S_, © X be the strict
transform of the section S_,, < F,,. Then 52, € {—n,—n—1,—n—2}. Let o € Aut(X, )
be an element that permutes the components of at least one singular geometric fibre f;.

Then S := a(S_,) is a section of n x id: Xi —> PL of self-intersection 5* = 52, and

it intersects the other component of fy. It follows that S := n(S) < F, is a section of
self-intersection S? € {—n + 2, —n + 1, —n}, depending on how many of the points blown
up by 1 are contained in S_,,. Since S? > 0, we have n < 2. If n = 2, we have S? = 0 and
hence S ~ S_5 + f, which means that S-S _5 = —1, which is impossible. It follows that
n=0orn =1, and so X is a del Pezzo surface of degree 6 or 7. In the latter case, no
element of Auty(X,7) permutes the components of the singular fibre, hence X is a del
Pezzo surface of degree 6. U
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Lemma 6.2. Let m: X —> P! be a Aut(X, 7)-Mori fibre space with at least three singular
geometric fibres and suppose that there is a birational morphism of conic fibrations X —
Y, where Y =T, for somen =0 orY = SHY | and that Aut (X, m) is infinite. Then the
pair (X, Aut(X)) is as in Theorem 1.1(6).

Proof. The hypothesis that X is an Aut(X,n)-Mori fibre space implies that Auti(X, )
contains an element permuting the components of a singular geometric fibre. More-
over, X /P! has at least three singular geometric fibres, the image of the homomorphism
Aut (X, 7) — Aut(P') is finite and hence the kernel Auti(X/7) is infinite.

First, suppose that Y = [F,,.. Since X /P! has singular fibres, 7 is not an isomorphism.
Lemma 5.2 and the fact that Auti (X /m) is infinite imply that there exists N > 1 and
a birational morphism X — Iy that blows up pi,...,p, € Sy < Fy whose geomet-
ric components are in distinct geometric fibres and such that ), deg(p;) = 2N. Be-
cause 7 has at least three singular geometric fibres, Lemma 5.5(1) implies that N > 2,
and now Lemma 5.5(2) implies that Aut(X,7) = Aut(X). Lemma 5.4(1-2) implies that
(X, Aut(X)) is as in Theorem 1.1(6a).

Now, suppose that Y = S™. Since X /P! has at least three singular fibres, 7 is not
an isomorphism. Since Auty (X /) is infinite, Lemma 5.8 implies that 1 blows up points
p1,--.,pr € E whose geometric components are on distinct smooth geometric fibres, and
Remark 5.7 implies that they are all of even degree and each geometric component of E
contains half the geometric components of each p;. Lemma 5.11 implies that Aut(X, 7) =
Aut(X). Lemma 5.10 and the description of Dﬁ’Ll in Lemma 4.15 imply that the pair
(X, Aut(X)) is as in Theorem 1.1(6b). O

Proof of Theorem 1.1. By Proposition 2.13, there is a G-equivariant birational map P? --»
X to a G-Mori fibre space m: X — B that is one of the following:

e Bis a point and X ~ P? or X is a del Pezzo surface of degree 6 or 8,
e B = P! and there is a (perhaps non-equivariant) birational morphism of conic
fibrations X — Y with Y = F,, for some n > 0 or Y = SbL',

By Lemma 2.14, it suffices to look at the case G = Aut(X) or G = Aut(X, m), respectively.
The pair (P?, Aut(IP?)) is the one in Theorem 1.1(1).

If X is a del Pezzo surface of degree 8, then X is isomorphic to Iy, to F; or to QF for some
quadratic extension L/k by Lemma 3.2(1). However, [F; has a unique (—1)-curve, which is
hence Aut(F;)-invariant and its contraction conjugates Aut(IF;) to a subgroup of Aut(PP?).
It follows that X = QF or X = Fy, i.e. the pair (X, Aut(X)) is as in Theorem 1.1(2)—(3).

If X is a del Pezzo surface of degree 6, the Gal(k/k)-action on the hexagon of X
is one of the actions in Figure 1(1)—(9). Lemma 4.1(2-3) applied to Xi yields that
rk NS(Xi)A"%™%) = 1 and that the action of Autg(X) on NS(Xi) induces a split ex-
act sequence

1 — (k")? — Autg(X) — Symy xZ/2 — 1.

If the Gal(k/k)-action is as in Figure 1(7)and (9), Lemma 4.6 and Lemma 4.7 imply
that the pair (X, Auty (X)) is as in Theorem 1.1(5a).

If the Gal(k/k)-action is as in Figure 1(2)-3) and (5), then Lemma 4.11 and Lemma 4.9
and Lemma 4.12 imply that the pair (X, Aut(X)) is as in Theorem 1.1(5¢).

If the Gal(k/k)-action is as in Figure 1(1), Lemma 4.1 implies that (X, Aut(X)) is as
in Theorem 1.1(5(b)i).

If the Gal(k/k)-action is as in Figure 1(4), Lemma 4.10 implies that (X, Aut(X)) is as
in Theorem 1.1(5(b)ii).
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If the Gal(k/k)-action is as in Figure 1(6), Lemma 4.2 implies that (X, Aut(X)) is as
in Theorem 1.1(5(b)iii).

If the Gal(k/k)-action is as in Figure 1(8), Lemma 4.3 implies that (X, Aut(X)) is as
in Theorem 1.1(5(b)iv).

Suppose that X admits a conic fibration 7: X — P! that is an Aut(X, 7)-Mori fibre
space and there is a birational morphism 7: X — Y where Y = F,, for some n > 0 or
Y =8hi,

First, suppose that n is an isomorphism. If X 1y = IF,,, recall that Fy and F; have
already been discussed above, and that the family Aut(F,), n > 2 is the family in Theo-
rem 1.1(4), see Remark 5.1. If X £V = S&F then Aut(S“Y, 1) < Aut(SHE), and the
pair (SHY ) Aut(S%)) is as in Theorem 1.1(5¢) by Lemma 4.11.

Now, suppose that 1 is not an isomorphism. Since 7: X — P! is an Aut(X, 7)-Mori
fibre space, there is an element of Auty (X, ) that permutes the components of at least
one singular geometric fibre. If X /P! has at most two singular fibres, then the fact that
7 is not an isomorphism implies that ¥ = F,,, and Lemma 6.1 implies that X is a del
Pezzo surface of degree 6. Then Aut(X,7) € Aut(X) and we have already discussed the
pair (X, Aut(X)) above. If X /P! has at least three singular fibres, recall that Auti(X, )
is infinite by hypothesis, and now Lemma 6.2 implies that the pair (X, Aut(X)) is as in
Theorem 1.1(6). O

7. CLASSIFYING MAXIMAL ALGEBRAIC SUBGROUPS UP TO CONJUGACY

In this section we classify up to conjugacy and up to inclusion the maximal infinite
algebraic subgroups of Biry (IP?). For this, we first need to introduce the so-called Sarkisov
program. As before, k is a perfect field throughout the section.

7.1. The equivariant Sarkisov program. The Sarkisov program is an algorithmic way
to decompose birational maps between Mori fibre spaces into nice elementary birational
maps between Mori fibre spaces. In dimension 2, it is classical and treated exhaustively in
[19], and from a more modern point of view in [22]. In dimension 3, it is developed in [11]
over algebraically closed fields of characteristic zero. A non-algorithmic generalisation to
any dimension > 2 is given in [18] over C.

For surfaces, the Sarkisov program over k is the Gal(k/k)-equivariant classical Sarkisov
program over k. For an affine algebraic group G, we can consider two equivariant Sarkisov
programs:

e The G(k)-equivariant Sarkisov program over k; the links are G(k)-equivariant
birational maps between G(k)-Mori fibre spaces. If G = Aut(X) is one of the
groups from Theorem 1.1, it is the tool to give us the conjugacy class of G(k)
inside Biry (P?).

e The G-equivariant Sarkisov program is the G x Gal(k/k)-equivariant Sarkisov
program over k; the links are G-equivariant birational maps between G-Mori fibre
spaces. If G = Aut(X) is one of the groups from Theorem 1.1, it is the tool to give
us the morphisms G — Biri(P?) up to conjugation by an element of Biry (P?).

As part of Theorem 1.2, we will prove that these two classifications are not the same if k
has an extension of degree 2 or 3.

Over C and for connected algebraic groups GG, the G-equivariant Sarkisov program in
dimension > 2 is developed in [17].



ALGEBRAIC SUBGROUPS OF THE PLANE CREMONA GROUP 37

Definition 7.1. Let G be an affine algebraic group. We now define G (k)-equivariant Sark-
isov links. The notion of G-equivariant Sarkisov links is defined analogously by replacing
G (k) with G, bearing that by G-orbit we mean a G x Gal(k/k)-orbit.

A G(k)-equivariant Sarkisov link (or simply G(k)-equivariant link) is a G (k)-equivariant
birational map ¢: X --+ X’ between G(k)-Mori fibre spaces 7: X — B and 7': X' —
B’ that is one of the following:

X, Y X ; X/
¢ 7 N‘ / X / \ Jw lm
x B X X' B B B
B B=DB *
type I type II type IIT type IV

(type I) B is a point, B" is a curve, p~': X’ — X is the contraction of the G(k)-orbit
of a curve in X’ and mp~': X’ — B is a G(k)-equivariant rank 2 fibration (see
Definition 2.11). We call ¢ a link of type I.

(type II) Either B = B’ is a curve or a point, both 7 and 7" are contractions of the G(k)-
orbit of a curve and 7: Y — B is a G(k)-equivariant rank 2 fibration. We call
© a link of type II.

(type III) B is a curve, B’ is a point, ¢ is the contraction of the G(k)-orbit of a curve and
m'p: X — B is a G(k)-equivariant rank 2 fibration. We call ¢ a link of type III.
Its inverse is a link of type I.

(type IV) B’ and B’ are curves, ¢ is an G(k)-equivariant isomorphism not preserving the
conic fibrations X /B and X'/B’, and X /+ is a G(k)-equivariant rank 2 fibration.
We call ¢ a link of type 1V.

For G = {1} we recover the classical definition of a Sarkisov link over k.

The statement of Theorem 7.2 for G = {1} is [19, Theorem 2.5]. Its proof can be made
G (k)-equivariant and G-equivariant because for a geometrically rational variety X, the
Gy x Gal(k/k) has finite action on NS(X5) and G(k) has finite action on NS(X).

Theorem 7.2 (Equivariant version of [19, Theorem 2.5]). Let G be an affine algebraic
group. Any G(k)-equivariant birational map between two geometrically rational surfaces
that are G(k)-Mori fibre spaces is the composition of G(k)-equivariant Sarkisov links and
isomorphisms.

The same statement holds if we replace G(k) by G.

To study conjugacy classes of the automorphism groups of the surfaces in Theorem 1.1,
it therefore suffices to study equivariant Sarkisov links between them.

Remark 7.3. Definition 7.1 implies the following properties. Let ¢: X/B --» X'/B’ be
an equivariant link.

(1) If ¢ is a link of type I, then B is a point, X /B is an equivariant rank 1 fibration
above a point and X’/B is an equivariant rank 2 fibration above a point. Equi-
variant rank s fibrations above a point are in particular (non-equivariant) rank r
fibrations above a point for some r > s, see Definition 2.11, and so they are del
Pezzo surfaces, see Definition 2.4. So both X and X' are del Pezzo surfaces. By
symmetry, the same holds for a link of type III.
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(2) If ¢ is a link of type IT and B = B’ a point, then X /B and X'/B are equivariant
rank 1 fibrations above a point, and Y/B is an equivariant rank 2 fibration above
a point. Again, in particular, X, X’ and Y are all del Pezzo surfaces.

Many of the surfaces in Theorem 1.1 are equivariant Mori fibre spaces with respect
to their automorphism group, as well as to the group of k-points of their automorphism
group, and the restrictions for the possible Auty(X)-links are also restrictions on the
possibilities of Aut(X)-links.

We now classify the Auty(X)-equivariant links starting from a surface X from Theo-

rem 1.1 in the order (1-3), (5a), (5(b)ii-5(b)iv), (5(b)i), (4) and (6).

7.2. Autg(X)-equivariant links of del Pezzo surfaces of degree 8 and 9. We show
that there are no Auty (X )-equivariant links starting from a Auty (X )-Mori fibre space X
that is a rational del Pezzo surface of degree 8 or 9.

Lemma 7.4. (1) Auty(P?) does not have any orbits in P* with d € {1,...,8} geomet-
ric components that are in general position.
(2) For X = Fy and X = QF, Auty(X) does not have any orbits in X with d €
{1,...,7} geometric components that are in general position.

Proof. (1) Lemma 2.6 implies the claim for 1 < d < 4. If k is infinite and if Auty(P?) had
an orbit with 5 < d < 8 geometric components, then a® = id for any a € Auty (IP?), which
is false. Suppose that k is finite and let ¢ := |k| = 2. Let p = {p1, ..., p.} be a point in P?
of degree e = 5 and L/k be the smallest field extension such that pi,...,p. € P*(L). We

view Auty(P?) as an abstract subgroup of Autz(P?), which gives us

B | Auty (P?)]

| Auty (P?)-orbit of p; in P?(L)|’
Moreover, we have | Auty (P?)| = ¢*(¢*—1)(¢*—1) > ¢® > 8, and hence the Auty (P?)-orbit
of p in P? has > 9 geometric components.

(2) For X = Fy and d = 1,2, the claim follows from Remark 2.7. For X = QL the claim
follows from Remark 2.7 for d = 1, from Lemma 3.6 for d = 2. Let L/k be a quadratic
extension such that QF ~ P} xP} and by Lemma 3.5 we have Auty (QF) ~ PGLy(L)xZ/2.
For 3 < d < 7, we can repeat the argument of (1) for Fy and QF by using that for a finite
field k with ¢ := |k| = 2 we have

| Auty (Fo)| = 2| PGLy(k)|* = 2¢*(¢° — 1)* > 8

| Auty (QF)| = 2| PGLy(L)| = 2¢%(¢* — 1) > 8.

1 = | ni_; Stabug, 2y (Pi)| = [Stabaug, w2y (p1)]

O

Lemma 7.5. There is no Auty(X)-equivariant link starting from X = P?, X = QF or
X = Fo.

Proof. Since rk NS(X)Aux(X) = 1 the only Auty(X)-equivariant links starting from X
are of type I or II. Moreover, Auty(Fy)-equivariant links starting from Fy can be treated
like the ones starting from Q because NS(Fo)*uFo) = 7(f, + f,) = NS(QF), where
f1, fo are the fibres of the two projections of F.

By Remark 7.3, an Auty (P?)-equivariant link of type I or IT starting from P? blows up an
orbit with < 8 geometric components that are in general position, and by Lemma 7.4(1),
there is no such orbit. An Auty (X )-equivariant link of type I or II starting from X = QF
or X = Fy blows up an orbit with < 7 geometric components that are in general position,
and by Lemma 7.4(2), there is no such orbit. O
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7.3. Auty(X)-equivariant links of del Pezzo surfaces of degree 6 (5a). These del
Pezzo surfaces are Mori fibre spaces. We will show that there are no Auty(X)-equivariant
links starting from X.

Recall from Lemma 4.6 and Lemma 4.7 that there is a quadratic extension L/k such
that X7 is obtained by blowing up a point p = {p1, p2, p3} in P? of degree 3. We denote
by m: X;, —> P2 the blow-up of p. Recall that 7 Gal(L/k)7~! acts rationally on P?; its
generator v, is not defined at p and sends a general line onto a conic through p. Recall
that if X is rational, it has a rational point by Proposition 2.9.

Lemma 7.6. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5a) and fix
s € X (k). The map

Auty (P%, p1, pa, p3) — X(k), a7 (a(n(s)) = (7 am)(s)
1s bijective.
Proof. The map is injective, because these automorphisms already fix pi, p2, p3. For any
t € X(k), we have 7(t) € P2(L), and by Lemma 2.6 there exists a unique element of
a; € Auty (P2 py, po, p3) such that ay(m(s)) = t. Then 7~ 'aym € Auty(X) and its conjugate
by the generator of Gal(L/k) is still contained in Auty(X) and preserves each edge of

the hexagon, hence ¢,au) 05 € Auty, (P2, p1, pa, p3). The automorphism ), 0, fixes
p1, D2, ps, T(t), so it is the identity, and therefore o, € Auty(P?, p1, pa, p3)¥e’. O

Lemma 7.7. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5a). Then
|1 X(k)| =7 if k| =3 and | X (k)| = 3 if k| = 2. Moreover, in the latter case the blow-up
of X(k) is a del Pezzo surface.

Proof. If k is infinite, then P?(k) is dense in P?(k), and hence X (k) is infinite. If k is
finite, pick a rational point 7 € X (k). There exists a link of type IT ¢: X --» QF that is
not defined at r and contracts a curve with three geometric components passing through
r, see Figure 2. If Z — X is the blow-up of r and L/k a quadratic extension such that
Qr =Pl x P}, we have

¢ +1=[PHL)| = [Q" (k)| = [Z(k)| = [X (k)| - 1 + [P'(k)| = [ X(k)| + ¢

because the exceptional divisor of r is isomorphic to PL. It follows that | X (k)| = ¢*—¢+1 =

q¢g—1) + 1.

Suppose now that |k| = 2 and so | X (k)| = 3. Then X (k) is the image of the five points
QF(k) by ¢, and it suffices to show that the blow-up of QF(k) is a del Pezzo surface. We
write L = k(a), where a® + a + 1 = 0. The set QF(k) consists of

([1:0],[1:0]),([0:1],[0:1]), ([1:1],[1:1]),([1:a],[1:a?]),([1:a?],[1:a])
and we check that they are not contained in any fibre of QF nor in any bidegree (1, 1)-
curve. This yields the claim. 0

Lemma 7.8. Let X be a rational del Pezzo surface as in Theorem 1.1(5a).

(1) If |k| = 3, then X does not contain any Auty(X)-orbits with < 5 geometric com-
ponents.

(2) If |k| = 2, there is exactly one Auty (X)-orbit of X with < 5 geometric components,
namely X (k).

Proof. Since Gal(k/k) acts transitively on the edges of the hexagon, any orbit with < 5
geometric components is outside of it. Let D < P2 be the image of the hexagon by 7.
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Suppose that |k| > 3. By Lemma 7.7, we have | X (k)| = 7, so Lemma 7.6 implies
that the group Auty (P2, p1, p2, ps)¥” has > 7 elements. It acts faithfully on P?\ D, hence
any Autz (P2, p1, pa, p3)¥o’-orbit in P?\D has > 7 geometric components. It follows that
Auty (X)) has no orbits with < 5 geometric components on X.

Suppose now that |k| = 2 and let L/k be the extension of degree 2. We show that
7 Auty (X)m~-orbit of any point in P2\ D has either 3 or > 6 elements, and that w(X (k))
is the only orbit with 3 elements. Let ¢, € Biry(P?) be the quadratic involution from
Lemma 4.6(4) and Lemma 4.7(4) that lifts to an automorphism ¢, = 7 'p,m on X
over k inducing a rotation of order 2 on the hexagon of X. By Lemma 4.6(4) (resp.
Lemma 4.7(4)) the group

AlltL(]P)Z, b1, P2, p3)<wg> A <90P>

is isomorphic to a subgroup of Auty (X ). Lemma 7.7 and Lemma 7.6 imply that Auty, (P2, p, pa, p3) s
has 3 elements, and it acts faithfully on P2\ D. Over k, the involution ¢, is conjugate to
the involution [z :y : 2] -+ [yz : 22 : xy], which has a unique fixed point in PZ, namely
[1:1:1], because |k| = 2. Thus ¢, has a unique fixed point € P§. Then 7 := 7 (1)
is the unique fixed point of ¢, on X, and it is k-rational. We have shown that every
Auty (X)-orbit in X (L)\X (k) has > 6 elements. The set X (k) is an Auty (X )-orbit with
3 elements. O

Lemma 7.9. Let |k| = 2 and let X be a del Pezzo surface from Theorem 1.1(5(a)i). Any
Auty (X)-invariant link ¢: X --+Y is a link of type II not defined at X (k), and Y is a
del Pezzo surface as in Theorem 1.1(5(b)ii).

Proof. We have X (k) = {rq,rq,r3}, see Lemma 7.7, which is an Auty (X )-orbit by Lemma 7.8.
For a point s € S := {n(ry), 7(r2), m(r3), p1, P2, p3} < P2, we denote by C the strict trans-
form of the conic in P} passing through the five points in S\{s}, and let L, be the strict
transform of the line in P? through m(r;), 7(r;), ¢ # j. The curves

Cp=CpuvCyuC,y, Dy:=C, ULy, Dy:=C,, ULy, D3:=Cy ULy,

and L; :== Ly, ULy, U Ly.p,, @ = 1,2, 3, are irreducible over k. The curve C), is Auty (X)-
invariant, while Dy, Dy, D3 and Ly, Lo, Ly make up an Auty (X )-orbit, see Lemma 4.6(4)
for the generators of Auty(X).

Let n: Z — X be the blow-up of X (k), which is Auty (X )-equivariant by Lemma 7.8.
The surface Z is a del Pezzo surface of degree 3 by Lemma 7.7. There is at most one way to
complete 7 into an Auty (X )-equivariant link, because Z is an Auty (X )-equivariant rank
2 fibration, and hence there are at most two extremal Auty (X )-equivariant contractions
from Z. However, any conic fibration Z — P! is given by the fibres of the strict transforms
of conics through four fixed points in S or the strict transform of lines through one point
in P2, but none of them are Auty (X )-equivariant. So the link ¢ has to be of type II.

The only Auty(X) x Gal(k/k)-orbits of (—1)-curves on Z with < 6 geometric compo-
nents which are pairwise disjoint are the exceptional divisors of n and the strict transform
of C,. The contraction n': Z — Y of the latter induces an Auty(X)-equivariant link
X --+Y to a del Pezzo surface Y of degree 6.

Since the strict transforms of C), and C,, on Z are disjoint for i,j = 1,2,3, the
hexagon of Y consists in the curve n'(Dy) u n/(D3) U n'(D3). Each component 7n'(D;) of
this union is k-rational, so Gal(k/k) acts as rotation of order 2 on the hexagon of Y, i.e.
as in Figure 1(4). By Lemma 4.10, Y is described in Theorem 1.1(5(b)ii). O
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Proposition 7.10. Let X be a del Pezzo surface from Theorem 1.1(5a). Then, if |k| = 3,
there are no Auty(X)-equivariant links starting from X. If |k| = 2, the only Auty(X)-
equivariant link is the one from Lemma 7.9.

Proof. Since tk NS(X) = 1, only Auty(X)-equivariant links of type I or II can start from
X. By Remark 7.3, they are not defined at an orbit with < 5 geometric components. By
Lemma 7.8, such an orbit only exists for surfaces X as in Theorem 1.1(5a) if |k| = 2. The
claim now follows from Lemma 7.9. U

7.4. Autk(X)-equivariant links of del Pezzo surfaces of degree 6 (5(b)ii)—(5(b)iv).
Any del Pezzo surface X of degree 6 from Theorem 1.1(5(b)ii)—(5(b)iv) is a Auty (X )-Mori
fibre space, and we show that there are no Auty (X )-equivariant links starting from X.

Lemma 7.11. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5(b)ii). Then
any Auty(X)-orbit on X has at least 6 geometric components.

Proof. Let m: X — Fy be the contraction of a curve in the hexagon onto the point
p = {(p1,p1), (p2, p2)} of degree 2 with p; = [a; : 1], i = 1,2. Since Auty(X) acts by
Symg xZ/2 on the hexagon of X, any orbit with < 5 geometric components is outside of
the hexagon. Let D < Fy be the image by 7 of the hexagon, which contains p, and consider
the action of m Auty(X)7~! on Fo\D. The elements of Auty (P!, pi, ps) are exactly those
of the form

[u:v] = [(b(ar + az) + ¢)u — bajagv : bu + cv], [b: c] € P'(k)
and thus
|AUtk(Plap17P2)|2 = |P1(k)‘2 = 32 = 9.
Any non-trivial element of Auty (P!, p;, ps) has precisely two fixed points in P!. It follows
that the stabiliser in Auty (P, p1, p2)? of any point ps € (Fo)\ Dy is trivial and hence

|Auty (P!, p1, p2)?-orbit of py in (Fo\D)g| = | Autk (P, p1, pa)*| = 9.

We have shown that Auty (P!, p1, p2)? has no orbits on Fo\D with < 5 geometric compo-
nents, and hence that m Auty (X )7~ has not orbits on Fy\D with < 5 geometric compo-
nents. U

Remark 7.12. Let p = {p1, p2, p3} be a point of degree 3 in P2 Fix a point r € P?(k). In
particular, the point r is not collinear with any two components of p, and so Lemma 2.6
implies that the map Auty (P2, py, pe, p3) — P?*(k), a — a(r) is a bijection.

Lemma 7.13. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5(b)iii). Then
any Auty (X)-orbit on X has = 6 geometric components.

Proof. Since Auty(X) contains an element inducing a rotation of order 6 on the hexagon
of X, the hexagon does not contain Auty(X)-orbits with < 5 geometric components.
Consider the contraction m: X — P? of a curve in the hexagon of X onto the point
p = {p1,p2,p3} of degree 3, let D = P? be the image of the hexagon and consider
the action of Auty (P2, pi,p2,p3) © 7 Aut,(X)m™! on P?\D. Remark 7.12 implies that
| Auty (P%, p1, pa, p3)| = |P?(k)| = 7. The stabiliser of Auty (P2, p1, pa, p3) of any point in
(P2\D)g is trivial, so in particular all the Auty(P? p1,p2,ps)-orbits in P2\D have > 7
geometric components. It follows that 7 Auty(X)n ™! has no orbits in P*\D with < 5
geometric components. [l

Lemma 7.14. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5(b)iv). The
blow-up of X in any finite Auty(X)-orbit is not a del Pezzo surface.
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Proof. Let m: X — P? be the contraction of a curve C in the hexagon of X onto the point
p = {p1, p2, p3} of degree 3. By hypothesis, the splitting field L/k of p satisfies Gal(L/k) ~
Symg, so k is not finite [27, Theorem 6.5]. Remark 7.12 implies that Auty (P2, py, pa, p3)
is infinite. Let D < P? be the image by 7 of the hexagon and consider the action of
Auty (P2, py1, p2, p3) © 7 Auty (X)7! on P?\D. The stabiliser of Auty(P?, py, p2, p3) of any
point in (P?\D)g is trivial, and hence any Auty(P?, py, pa, p3)-orbit on P?\ D has infinitely
many geometric components. It follows that any Auty (X )-orbit with finitely many geo-
metric components is contained in the hexagon of X, and so its blow-up is not a del Pezzo
surface. 0

Proposition 7.15. There is no Auty(X)-equivariant link starting from a del Pezzo sur-
face X of degree 6 as in Theorem 1.1(5(b)ii) — (5(b)iv).

Proof. Since tk NS(X)A"(X) = 1 the only Auty(X)-equivariant links starting from X
are of type I or II, and by Remark 7.3, they are not defined in an Auty(X)-orbit with
< 5 geometric components and its blow-up is a del Pezzo surface. If X is as in Theo-
rem 1.1(5(b)ii)—(5(b)iii) no such orbit exists respectively by Lemma 7.11 and Lemma 7.13.
If X is as in Theorem 1.1(5(b)iv), then the blow-up of any such orbit is not a del Pezzo
surface by Lemma 7.14. 0

7.5. Auty(X)-equivariant links of del Pezzo surfaces of degree 6 (5(b)i). Studying
Auty (X)-equivariant links for such a del Pezzo surface is a bit more involved. We will show
that there are equivariant links starting from X only if |k| = 2 and provide examples.
Recall Lemma 4.1 for a description of X.

Lemma 7.16. Fiz homogeneous coordinates in P? and consider the subgroup H = PGL3(k)
of permutation matrices. If the H-orbit O of a point in {xyz # 0} = P? has < 5 geometric
components, it is one of the following:

(1) O ={[1:1:1]},

(2) O={[1:a:d*],[1:a*:a]} witha® =1,

(3) O={[1:a:a],[a:a:1],[a:1:al} for some a € k*.
Proof. The H-orbit Oy of a point p := [1 : a : b] € {zyz # 0} is contained in the set

{[1:a:0,[1:b:a],[a:b:1],[b:a:1],[a:1:0],[b:1:a]}
={[1:a:b],[1:b:a],[1:a:a ], [1:abt :0 ], [1:a7 sa™ 0], (107 s ab™ ']}

If p is an H-fixed point, we have Oy = O = {[1:1: 1]}. We check that if |Og| = 2, then
we have O = {[1:a:d?|,[1:a®: a]} with ® = 1. If |O| = 3, then O = {[1:1: ¢],[1:
c:1],[1: ¢t ¢t} for some ¢ € k*. We also check that 4 < |Og] < 5 is not possible. [
Lemma 7.17. Let X be the del Pezzo surface of degree 6 from Theorem 1.1(5(0)i).

(1) If |k| = 4, then X contains no Auty(X)-orbits with < 5 geometric components.

(2) If k| = 3, then Auty(X) has ezactly one orbit on X with < 5 geometric compo-
nents, namely the orbit {([1: +1: F1],[1: £1: F1])} with 4 elements. Its blow-up
is not a del Pezzo surface.

(3) If |k| = 2, then Autk(X) has exactly two orbits on X with <5 geometric compo-
nents, namely the fived point ([1:1:1],[1: 1:1]) and the point {([1: ¢ : ¢*],[1: ¢*: (]),
([1:¢%:C],[1:C: %)} of degree 2, where ¢ ¢ k, (3 = 1.

Proof. By Lemma 4.1(2), the group Auty (X ) acts transitively on the edges of the hexagon,
so the hexagon does not contain Auty (X )-orbits with < 5 geometric components. We pick
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three disjoint edges of the hexagon and consider their contraction 7: X — P? onto the
coordinate points, which maps the hexagon onto the curve {zyz = 0}. It remains to
study the 7 Auty(X)n -action on {zryz # 0}. The stabiliser subgroup of the subgroup
(k*)? « 7 Auty (X)7 ! of diagonal elements of any point in {xyz # 0} is trivial. It follows
that the (k*)?-orbit of any point in P? has > 9 geometric components if |k*| > 3, proving
(1).

Let 2 < |k| < 3 and recall from Lemma 4.1(2) that m Auty (X)7 ! ~ (k*)? x (H x Z/2),
where H = 7 Symyn~! is the group of permutation matrices in Auty(P?) and Z/2 is
generated by the involution (z,y) --» (1, %)

If a m Auty (X )7 t-orbit in {xyz # 0} has < 5 geometric components, then this holds
in particular for an H-orbit O, which is one of the following by Lemma 7.16

() 0= {1:1:1],
(i) O ={[1:a:d?,[1:a*: a]} with a® =1,

(iii) O={[1:a:a],[1:1:a7],[1:a"t: 1]} for some a € k*.

(3) If |k| = 2, then 7 Auty (X)7r ! ~ (H x Z/2) and the point [1:1: 1] is a fixed point
and is equal to (iii) and (ii) fora = 1. If a ¢ k and a® = 1, the point {[1 : a : a®],[1 : a® : a]}
of degree 2 is a m Auty (X )7 !-fixed point.

(2) If |k| = 3, then the 7 Auty (X)mt-orbit of [1:1: 1] is the set O = {[1: £1 : +1]},
which has 4 elements. The 7 Auty(X)n~-orbit of a point in (ii) or (iii) is either the
orbit of [1 : 1 : 1] or has > 6 geometric components. The line {y = 2z} < P? contains
[1:0:0],[1:—1:—=1],[1:1:1], so the blow-up of X in 7~!(O) is not a del Pezzo
surface. 0

Lemma 7.18. Let |k| = 2 and let X be the del Pezzo surface of degree 6 from Theo-
rem 1.1(5(b)i). The blow-up of X in any Auty(X)-orbit with < 5 geometric components
does not admit a Auty(X)-equivariant fibration over P!,

Proof. Let m: X — P2 be the blow-up of the coordinate points p1, ps, p3. By Lemma 7.17(3),
the only Auty(X)-orbits on X with < 5 geometric components are a fixed-point r € X (k)
and a point ¢ € X of degree 2, both not on the hexagon.

Let Y — X be the blow-up of r and let Y /P! be a conic fibration. Its fibres are
either the strict transform of the lines through one of pq, po, p3, r, or the strict transform
of the conics through pi, ps, ps, r. Since Auty(X) ~ Symg, xZ/2 acts transitively on the
edges of the hexagon of X by Lemma 4.1 and the quadratic involution in 7 Auty (X )7 ~*
sends a general line through r onto a conic through pi, ps, ps, 7, it follows that Y /P! is
not Auty (X)-equivariant.

Let Y — X be the blow-up of ¢ and Y /P! a conic fibration. Its fibres are the strict
transforms of the conics through ¢ and two of py, ps, p3 or of a line through one of py, ps, ps.
Again, as Auty (X) acts transitively on the edges of the hexagon of X, it follows that Y /P!
is not Auty (X)-equivariant. O
Example 7.19. Let m: X — P? be the blow-up of the coordinate points p;, ps, p3 of P2.
If |k| = 2, then by Lemma 4.1(2) the group 7 Auty (X )7 ! ~ Sym, xZ/2 is generated by

a:z:y:zl—lxziyl, Bilr:iy:z]l—[z:y:x], az(x,y)F—Jr(;,;)
(1) If char(k) = 2, the birational map 1;: P? --» F
Urifzcy sz ms ([x -2y — 2] [y(e — 2) sy — 2))),

Uit ([uo = ui], [vo s v1]) == [uo(uo + ui)vy = ug(ug + uy)vg = ugur (vo + v1)]
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is not defined at py,pe, p3, [1: 1: 1] and contracts the 7 Auty (X )7 -orbit {(y —
2)(z — z)(x —y) = 0}. If |k| = 2, it lifts to an Auty(X)-birational map
(701 = ¢1ﬂ'Z X -——> FO
not defined at 7=([1: 1 : 1]), because
Prapy ™ ([ug 2 wa], [vo s v1]) = ([uo + up = wa), [vo + o1 : 11]),
1By (o s wl, oo s ol) = ([wo = uo +wil, [vo = vo + v1]),
oyt ([uo : w], [vo = v1]) = ([vo = w1, [uo = wi])
are automorphisms of Fy. So ¢1: X --+ [y is an Auty (X )-equivariant link of type
II.
(2) Let char(k) = 2 and ¢ € k\k, ¢* = 1 and ¢ := {[1 : ¢ : ¢*],[1: ¢*: (]}. The
birational map 1) : P? --» [y
Yo [xiy:z]r> (zy+xz4+yz:ylz +y+2)] [zy + 22+ yz @ 2(x +y + 2)],
Yyt ([uo = ui], [vo : v1]) == [ugvo(uivo + ugvy + wgvy) = wyve(uvg + uevy + Ugtp)
o1 (U109 + ugv + Ugvy)]
is not defined at p1,ps, ps3, ¢ and contracts the rational curves {(z + y + 2)(zy +
zz + yz) = 0}, and the conic {y* + yz + 2 = 0} onto ¢ := {([1: ¢],[1: ¢*]),([1
C*],[1:¢])}. Let n: X’ — Fy be the blow-up of ¢/, which is a del Pezzo surface

of degree 6 as in Lemma 4.10 (Figure 1(4)). If |k| = 2, the contracted curves are
Auty (X)-invariant and 1, lifts to an Auty (X )-equivariant birational map

0y = Them: X —- X
not defined at 7—!(¢q). Consider the conjugates
Paatpy ™t ([ug wr], [vo = vi]) = ([wo o], [ug = wr)),
UaBy s ([uo = ual, [vo : v1]) ~-» ([Uo ], [uovo + (urvo + wovy) : urvr + (uovy + wr)]),
Yooty i ([ug = ui], [vo = v1]) = ([us @ uo), [v1 : vo)).

Then oaby *, ootpy 't € Auty(Fy) exchange the geometric components of ¢’ and
exchange or preserve the rulings of Fy, hence lift to elements of Auty(X’). The
birational involution 123151 preserves the first ruling of Fy and exchanges its
sections through the components of ¢/, and it contracts the fibre above {[1: (], [1 :
C?]} onto ¢, so it lifts to an automorphism of X’. So ¢9: X --+» X’ is an Auty (X)-
equivariant link of type II.

Lemma 7.20. Let |k| = 2 and let X be the del Pezzo surface of degree 6 from Theo-
rem 1.1(5(b)1). Any Auty(X)-equivariant link of type II starting from X is one of the
links o1, py in Example 7.19, up to automorphisms of the target surface.

Proof. Let ¢ be an Auty (X )-equivariant link of type Il starting from X andlet: ¥ — X
be the blow-up of its base-locus. Then Y — = is an Auty (X )-equivariant rank 2 fibration,
and by Remark 7.3 the orbit blown-up by 1 has < 5 components. Since rk NS(Y)Autk(X) —
2, there are exactly two extremal Auty(X)-equivariant contractions starting from Y,
namely the birational morphisms n and 7. It follows that the orbit blown up by 7 deter-
mines ¢ up to automorphisms of X’. By Lemma 7.17(3), the only Auty (X )-orbits on X

are pr=([L:1:1],[1:1:1]) and g == {([1: ¢+ ¢*],[1: ¢ D), ([1:¢* = ¢ [1:C: D}
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¢ ¢ k, 3 = 1. The birational maps ¢;: X --» Fy and ¢y: X --» X’ in Example 7.19 are
Auty (X)-equivariant links of type II with base-points p and g, respectively. 0

Proposition 7.21. Let X be the del Pezzo surface of degree 6 from Theorem 1.1(5(b)i).

(1) If |k| = 3, there is no Auty(X)-equivariant link starting from X.

(2) If |k| = 2, any Auty(X)-equivariant link starting from X is one of the Auty(X)-
equivariant links of type II in FExample 7.19, up to automorphisms of the target
surface.

Proof. Since tk NS(X)A"(X) = 1 the only Auty(X)-equivariant links starting from X
are of type I or II, and by Remark 7.3, they are not defined in an Auty (X )-orbit with <5
geometric components and the blow-up of this orbit is a del Pezzo surface.

If k| = 4, no such orbits exist by Lemma 7.17(1). If |k| = 3, the blow-up of any
Auty (X)-orbit X with < 5 geometric components is not a del Pezzo surface by Lemma 7.17(2).
If |k| = 2, Lemma 7.18 implies that the blow-up of any Auty(X)-orbit on X with
< 5 geometric components does not admit an Auty (X )-equivariant conic fibration. In
particular, there is no Auty (X )-equivariant link of type I starting from X. By Lemma 7.20,
any Auty(X)-equivariant link of type II starting from X is one of the birational maps in
Example 7.19. O

7.6. Auty(X,m)-equivariant links of conic fibrations. We compute all Auty (X, 7)-
equivariant links starting from the conic fibrations listed in Theorem 1.1.

Lemma 7.22. Let m: X — P! be a conic fibration from Theorem 1.1(6a) such that
k*/un (k) is trivial. Let #': Y — P! be a conic fibration such that Aut(Y /7’) is infinite.
Suppose that there is a Auty (X, 7)-equivariant link ¢ X --»Y of type II. Then Y ~ X.

Proof. The link 1) preserves the set of singular fibres, of which there are at least 4, and it
commutes with the Gal(k/k)-action on the set of geometric components of the singular
fibres. It follows from Lemma 2.8 that Y is obtained by blowing up a Hirzebruch surface.
Since Y is an Auty (X, w)-Mori fibre space by definition of an equivariant link, the subgroup
Auty (X, 7) € Auty (Y, n’') contains an element exchanging the components of a singular
geometric fibre. Moreover, since Aut(Y /m) is infinite by hypothesis, Lemma 5.2 implies
that there is a birational morphism 7': Y — F,, blowing up points q¢i,...,qs € Sy,
such that >7°_; deg(¢;) = 2m. By Lemma 5.4(2) and since k*/pu, (k) is trivial, we have
Auty (X /m) = {p) ~ Z/2 for some involution ¢. By Lemma 5.4(3) it has a fixed curve
in X, which is the strict transform C' of a hyperelliptic curve C” in F,, (the irreducible
double cover of P!) ramified at pi,...,ps and disjoint from S_,. It follows that C’ ~
258, + 2nf = 25, and hence C? = —4n since the strict transform of S, is a (—n)-
curve on X. An Auty (X, 7)-orbit contains either 1 or 2 points in the same fibre. The
base-points of the Auty(X,7)-equivariant link 1) are therefore necessarily contained in
the Auty (X, 7)-fixed curve C. Since C'is a double cover of P!, it follows that C? = 1(C)2.
The map Yy ~t € Auty (Y /7’) exchanges the components of each singular fibre, so it also
exchanges the two special sections of Y. By Lemma 5.4(3) it fixes a curve D < Y, which
satisfies D? = —4m with the same argument as above. It follows that C' = ¥ ~!(D), and
now —4n = C? = D? = —4m implies n = m. Since 1 induces the identity on P!, we
conclude that {q1,...,qs} = {p1,...,pr} O

Lemma 7.23. Suppose that m: X — P! is a conic fibration as in Theorem 1.1(4) or
(6). Then there are no Auty (X, 7)-equivariant links of type I, II11 and IV starting from
X. Moreover,
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(1) if X =TF,, n = 2, there are no Auty(F,, m,)-equivariant links of type II starting
from TF,,.

(2) If X is as in Theorem 1.1(6a) and k*/p, (k) is non-trivial, there are no Auty (X, 7)-
equivariant links of type II starting from X.

(3) If X is as in Theorem 1.1(6b), there are no Auty(X,7)-equivariant links of type
11 starting from X.

Proof. Since NS(X)Autx(Xm) ~ 72 no Auty (X, 7)-equivariant links of type I can start from
X. An Auty (X, m)-link of type III can only start from a del Pezzo surface (see Remark 7.3),
so not from X. Since Auty (X, ) = Autk(X), any automorphism of X preserves the conic
bundle structure, so there are no Auty (X, 7)-equivariant links of type IV starting from
X.

(1) Suppose that there is a Auty (I, )-equivariant link ¢: F,, --» Y of type II, and let
B < F,, be the orbit of base-points and d > 1 its number of geometric components. We
have | Auty (F,,/m,)| = k™| = 23 by Remark 5.1, so the Auty(TF,, /7, )-orbit of any point
outside the special section has at least two geometric components in the same geometric
fibre. If follows that B < S_,, and hence 1 is a birational map from F,, to [F,,,; and sends
S_p onto S_(,1q). Let P € K[z, 21]q be a homogeneous polynomial defining B. Then 1 is
of the form

Vi, - Foiq, [yo Y1520 ¢ 2'1] -2 [Q(Zmzl)yo : R(ZO, Zl)yo + P(Zmzl)yl; 20 - 21]

for some homogeneous @, R € k[z, z1] of degree d. For any a € Auty(F,,/7,) ~ k[z0, 21|
we have Yayp™! € Auty(F, q/mnsa), and we compute that it implies \ := g e k* and
hence Ao € k[20, 21]n+a (see Remark 5.1), contradicting d > 1.

(2) If 7: X —> P! is a conic fibration as in Theorem 1.1(6a) and the torus subgroup
k* /1, (k) < Auty (X /7) is non-trivial, then the Auty (X /m)-orbit of a point on a smooth
fibre outside the two (—n)-sections has at least two geometric components in the same
smooth fibre. Since Z/2 < Auty(X/7) exchanges the two (—n)-sections, the same holds
for any point contained in them. It follows that there are no Auty (X, 7)-equivariant links
of type II starting from X.

(3) Let m: X —> P! be a conic fibration as in Theorem 1.1(6b). Consider the subgroup
SOLY (k) of Auty (X /n) fixing the geometric components of the special double section E
from Lemma 5.10(2). Let us show that |[SO® (k)| = 2. From Lemma 4.14 we obtain:

e If L, I’ are not k-isomorphic, then k is infinite, and so soLt (k) ~ k* is infinite.
o If L = I/, then SO*(k) ~ {a € L* | aa? = 1}, where g is the generator of
Gal(L/k). If [k| = 3, then +1 € SO**(k), and if |k| = 2, then [SO™* (k)| = |L*| =

3.
In any case, it follows that the Auty (X /7)-orbit of a point on a smooth fibre outside F has
at least two geometric components in the same smooth fibre. Since Auty (X /7) contains
an involution exchanging the geometric components of £ by Lemma 5.10(2), the same
holds for any point in E. It follows that there are no Auty (X, )-equivariant links of type
IT starting from X. O

7.7. Proof of Theorem 1.2, Corollary 1.3 and Theorem 1.4. Let GG be an affine
algebraic group and let X /B be a G-Mori fibre space that is also a G(k)-Mori fibre
space. A G-equivariant birational map is in particular G'(k)-equivariant, hence if X is
G(k)-birationally (super)rigid it is also G-birationally (super)rigid.

On the other hand, G-birationally (super)rigid does not imply G(k)-birationally (su-
per)rigid: the next lemma shows that the del Pezzo surface X of degree 6 obtained by



ALGEBRAIC SUBGROUPS OF THE PLANE CREMONA GROUP 47

blowing up P? in three rational points is Aut(X)-birationally superrigid and Example 7.19
shows that X is not even Auty(X)-birationally rigid if |k| = 2.

Lemma 7.24. Any del Pezzo surface X of degree 6 is Aut(X)-birationally superrigid.

Proof. The surface Xi is isomorphic to the del Pezzo surface obtained by blowing up
three rational points in PZ. In particular, rk NS(Xp)*"«*) = 1 by Lemma 4.1(3), hence
X is an Aut(X)-Mori fibre space and there are no Aut(X)-equivariant links of type III
or IV starting from X. The base-locus of an Aut(X)-equivariant link of type I or II is an
Autg(X) x Gal(k/k)-orbit on Xi, and by Remark 7.3 it has < 5 elements. Lemma 7.17(1)
implies that Auti(X) = Aut(Xy) has no such orbits. By Theorem 7.2, any Aut(X)-
equivariant birational map starting from X decomposes into isomorphisms and Aut(X)-
equivariant links. As there are no Aut(X)-equivariant links starting from X, it follows
that X is Aut(X)-birationally superrigid. O

Proof of Theorem 1.2. (2)—(5) Any surface X as in Theorem 1.1(1)—(3), (5a), and (5b) is a
del Pezzo surface that is at the same time a Auty (X )-Mori fibre space and an Aut(X)-Mori
fibre space. Any conic fibration 7: X — P! as in Theorem 1.1(4) and (6) has Aut(X) =
Aut(X, 7) and Auty(X) = Auty (X, ), and it is at the same time a Auty(X)-Mori fibre
space and an Aut(X)-Mori fibre space. By Theorem 7.2, any equivariant birational map
between equivariant Mori fibre spaces decomposes into equivariant Sarkisov links, hence
in order to show that an equivariant Mori fibre space X /B is equivariantly birationally
superrigid, it suffices to show that there are no equivariant links starting from X.

(2) For X = P2, X = QL and X = Fy the claim follows from Lemma 7.5 and for
X =F,,n > 2, from Lemma 7.23(1). For X a del Pezzo surface of degree 6 as in (5(b)ii)—-
(5(b)iv) the claim follows from Proposition 7.15, and for a conic fibration X /P! as in (6b)
from Lemma 7.23.

(3) For X a del Pezzo surface of degree 6 as in (5a) the claim is Proposition 7.10.

(4) The claim follows from Proposition 7.21.

(5) The claim follows from Lemma 7.22 and Lemma 7.23(2).

(1) It follows from (2)—(5) that for any surface X in Theorem 1.1 there is an alge-
braic extension L/k such that X is Auty (X )-birationally superrigid. Therefore, X is also
Aut(X)-birationally superrigid. O

Proof of Corollary 1.3. Theorem 1.1 implies (1). By Theorem 1.2(1), the surfaces X in
Theorem 1.1 are Aut(X)-birationally superrigid, so the groups Aut(X) are maximal and
they are conjugate if and only if their surfaces are isomorphic. Theorem 1.1 now implies
(2).

By Theorem 1.2(2)—(5), the surfaces X from Theorem 1.1(1)—-(4) and (5(b)ii)—(5(b)iv),
(6b) are Auty (X )-birationally superrigid. The surface X from (6a) are Auty (X )-birationally
rigid within the set of classes of surfaces from Theorem 1.1. The del Pezzo surfaces X
from (5a) and (5(b)i) are Auty(X)-birationally superrigid if |k| > 3. Hence the listed
groups Auty(X) are maximal and they are conjugate by a birational map if and only if
their surfaces are isomorphic. Theorem 1.1 now implies (3). O

Lemma 7.25. Let k be a perfect field and let F'/k be a field extension. The following are
equivalent:

(1) There exists a point p of degree 3 in P2, not all irreducible components collinear,
such that F is the splitting field of p.
(2) F is the splitting field of an irreducible polynomial of degree 3 over k.
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(3) The field extension F/k is Galois and Gal(F/k) is isomorphic to a transitive
subgroup of Symg (that is to Z/3Z or Syms).

Proof. (1) implies (2): Since the irreducible components p; of p are not collinear, there is an
irreducible conic defined over k that contains p. With a linear transformation defined over
k this conic can be assumed to be given by z? — yz = 0, and so p; = [a; : a? : 1] for some
a; € Ffori=1,2,3, and {a1, as, az} is a Galois orbit. Hence ¢(t) = (t—a1)(t—az)(t—a3) €
k[t] is irreducible. The splitting field L of ¢(t) is k(ay, as,a3) = F.

(2) implies (1): Similar to above.

(2) implies (3): By assumption F is the splitting field of an irreducible and hence
separable polynomial f. Therefore, F'/k is normal and hence Galois. So Gal(F'/k) acts
transitively on the three roots of f, hence Gal(F'/k) is isomorphic to a transitive subgroup
of Syms;.

(3) implies (2): Note that by the Primitive element Theorem, there exists a € F' such
that F' = k(a). Let f be the minimal polynomial of a over k, hence deg(f) = [F : k] =
| Gal(F'/k)| € {3,6}. Let L be the splitting field of f, which is a normal extension of k. In
particular, F' = k(a) = L. Hence, if deg(f) = 3 we are done.

In the other case we have Gal(F'/k) ~ Symg, so deg(f) = 6. The roots of f form one
Galois-orbit. After fixing an isomorphism Gal(F'/k) ~ Symg, we write 0;; = (ij), and we
write 7 = (123). So we can write the six roots of f as a; = 7°(a) for i = 1,2,3 (so a3 = a),
and ay = 013(a), as = o93(a), ag = o12(a). Set

b1 = ayay, by = asas, by = asag

and note that the o;; act as transposition of b;,b;, and that that 7 is the translation
by +— by — bs. So {b1,be, b3} is a Gal(F/k)-orbit of size 3 with minimal polynomial
g = (t—b1)(t — by)(t — b3) € k[t]. So the splitting field L’ of g is contained in F' and its
Galois group is isomorphic to Sym,. Hence

6 =|Gal(L'/k)| = [L' : k] < [F:k] =6,
which implies F' = L’ is the splitting field of an irreducible polynomial of degree 3. 0J

Proof of Theorem 1.4. By Corollary 1.3(3) it suffices to list the isomorphism classes of the
surfaces in Theorem 1.1(1)—(4), (5(b)ii)—(5(b)iv), (6), and for (5a) and (5(b)i) if |k| = 3.

The plane P? is unique up to isomorphism by Chételet’s Theorem, F is unique up to
isomorphism by Lemma 3.2(1), and for any k-isomorphism class of quadratic extensions
L/k we have a unique isomorphism class of QF, also by Lemma 3.2(1). Hirzebruch sur-
faces are determined by their special section. The parametrisation of the classes of del
Pezzo surfaces from (5a) follows from Lemma 4.6(3), Lemma 4.7(3) and Lemma 7.25. The
parametrisation of the classes of del Pezzo surfaces from (5b) follows from Lemma 4.1(1),
Lemma 4.2(2), Lemma 4.3(2), Lemma 4.10(2) and Lemma 7.25. The parametrisations for
the conic fibrations from (6a) and (6b) follow from Lemma 5.6 and Lemma 5.12. O

8. THE IMAGE BY A QUOTIENT HOMOMORPHISM

We call two Mori fibre spaces X;/P! and X, /P! equivalent if there is a birational map
X1 --+ X, that preserves the fibrations. In particular, if ¢: X; --+ X, is a link of type
IT between Mori fibre spaces X;/P! and X,/P', then these two are equivalent. There is
only one class of Mori fibre spaces birational to F; [33, Lemma|, because all rational
points in P? are equivalent up to Aut(P?). We denote by Js the set of classes of Mori fibre
spaces birational to some S™%', and by J; the set of classes birational to a blow-up of P?
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in a point of degree 4 whose geometric components are in general position. We call two
Sarkisov links ¢ and ¢’ of type II between conic fibrations equivalent if the conic fibrations
are equivalent and and if the base-points of ¢ and ¢’ have the same degree. For a class C'
of equivalent rational Mori fibre spaces, we denote by M (C') the set of equivalence classes
of links of type II between conic fibrations in the class C' whose base-points have degree
> 16.

Proof of Proposition 1.5. First, suppose that [k : k] = 2. Then every non-trivial algebraic
extension of k is k by [1, Satz 4] and k is of characteristic zero [1, p.231]. In particular,
P? contains no points of degree > 3, and so the only rational Mori fibre spaces are
Hirzebruch surfaces and S&*% — PL. Moreover, M(F,) is empty. By [40, Theorem 1.3],
there is a surjective homomorphism Birg(P?) — P, Z/2, where |I| = |R|. In fact, by

construction of the homomorphism, there is a natural bijection I — {a2|i|b2 | a,b €

R,b # 0}. The whole article [39] can be translated word-by-word over a field k with

[k : k] = 2, and consequently we have a surjective homomorphism Bir, (P?) — P, Z/2,
where [ = {% | a,b € k,b # 0} (we replace |a| by a?), and I has the cardinality of k.

If [k : k] > 2, the result is [33, Theorem 3, Theorem 4.]. O

Definition 8.1. Let BirMori(PP?) be the groupoid of birational maps between Mori fibre
spaces birational to P2. Tt is generated by Sarkisov links by Theorem 7.2. The homomor-
phism W of groupoids from [33, Theorem 3, Theorem 4]

BirMori(P?) % (Drertrr) Z/2) *#cerss(@Dyenr(cy Z/2) * (¥ cess Dyerr(c) Z/2)

Ul /

Birk (]P2)

sends any Sarkisov link of type II between conic fibrations and whose base-point has
degree > 16 onto the generator indexed by its class, and it sends all other Sarkisov links
and all isomorphisms between Mori fibre spaces to zero.

Remark 8.2. The homomorphism WV is non-trivial. Indeed, the surjective homomorphism
Biry (P?) — (D, Z/2) * ()5, D; Z/2) * (%5, D; Z/2) from [33, Theorem 4] is obtained
by composing ¥ with suitable projections within each abelian factor of the free product,
see [33, Proof of Theorem 4 in §6].

We now compute the images by ¥ of k-points of the maximal algebraic subgroups of
Biry (P?) listed in Theorem 1.1.

Remark 8.3. By definition of the groupoid homomorphism ¥ (Definition 8.1), it maps au-
tomorphism groups of Mori fibre spaces onto zero, so the groups ¥ (Auty (P?)), ¥(Auty(Q%)),
U(Auty(F,)), n # 1, and U(Aut(S™", 7)) are trivial. A del Pezzo surface X of degree 6
as in Theorem 1.1(5a) is a Mori fibre space by Lemma 4.6 and Lemma 4.7, so ¥(Auty (X))
is trivial as well.

If X is a del Pezzo surface from Theorem 1(5c¢), there exists a birational morphism
n: X — QF such that n Auty(X)n~! < Auti(QF), so in particular ¥(n Auty(X)n~) is

trivial as well.

Lemma 8.4. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5b), which
is equipped with a birational morphism n: X — Y to Y = P2 or Y = Fy. Then
U (n Auty (X)n™Y) is trivial.
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Proof. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5(b)i), (5(b)iii), and
(5(b)iv), which is the blow-up : X — P? in three rational points or in a point of
degree 3. By Lemma 4.1(2), Lemma 4.2(3) and Lemma 4.3(3), the group n Auty(X)n™!
is generated by subgroups of Auty(P?) and a quadratic involution of P? that has either
three rational base-points or is a Sarkisov link of type Il with a base-point of degree 3. It
follows from the definition of ¥ (Definition 8.1) that W(n Auty(X)n ') is trivial.

The del Pezzo surface X of degree 6 from Theorem 1.1(5(b)ii) is the blow-up of : X —
Fy in a point of degree 2. By Lemma 4.10(3), the group n Auty(X)n~! is generated by
subgroups of Auty(Fy) and a birational involution of Fy that is a link of type II of conic
fibrations with a base-point of degree 2. Again it follows that W(n Auty (X)n ") is trivial.

O

Lemma 8.5. Let n = 2 and let p: F, --+ F,, be the involution from Ezample 5.3 with
base-points p1, ..., p, € F,. Then there exist links o1, ..., . of type II between Hirzebruch
surfaces such that @; has a base-point of degree deg(p;) and ¢ = ¢+ ¢1.

Proof. Recall from Example 5.3 that pq, ..., p, are contained in the section S,, ¢ F,, and
that the homogeneous polynomials P; € k[2, 21]aeg(p,) define m(p;). The involution ¢ is
given by

@ (y1,21) —=» (PE/y, 21)
We define dy := 0 and d; := Z;:I deg(p;). For ¢ = 1,...,r, the birational maps

®;: ]Fn*di—l -2 andiv (91721) =2 (yl/Pi(zl)vzl) dz < n,
(o Fn—di_l -2 Fdi—m (ylazl) -2 (Pi(zl)/yuzﬂ di-y <n,d; >n
@it Fa_yn == Fa,n, (y1,21) == (Pi(21)y1,21), dica >

are links of type II with a base-point of degree deg(p;), and we compute that p = ¢, - - ;1.
O

Lemma 8.6. Let m: X — P! be a conic fibration from Theorem 1.1(6a) and letn: X —
F,., n = 2, be the birational morphism blowing up p1,...,p.. Let p: F, --» F, be the
involution from Ezample 5.3 and ¢ = @, -1 the decomposition into links of type II
from Lemma 8.5. Then (n Auty (X, 7)n~") is generated by the element U(p) = U(p,) +
e F ().

Proof. Let A « P! be the image of the singular fibres of X. By Lemma 5.4(1-2), we have
Auty (X, 7) ~ Auty (X /7) x Auty (P, A)  and  Auty(X/7m) ~ H x {n" on)

where nHn™! < Auty(F,). Moreover, any a € Auty (P!, A) lifts to an element & €
Auty (F,,, p1, ..., pr), which lifts via ) to an element of Auty (X, 7). It follows from the defi-
nition of ¥ that ¥ (n Auty (P, A)p~) and ¥ (nHn') are trivial, and that ¥ (n Autk (X, 7)n™")
is generated by ¥(p) = ¥(p,) + - + V(). O

Lemma 8.7. Let ¢: SHY ——5 SBL be the involution from Ezample 5.9 with base-points
p1, ..., pr € SEY . Then there exist links o1, ..., pp: SEE ——s SLL of type IT over P* and
o € Auty (S™Y /1) such that p; has base-point p; and such that o = ap, - - ;.

Proof. 1t suffices to construct the ; for the involution ¢ in the case that L = L', since
the involution for the other case is obtained by conjugating ¢ with a suitable element of
v € PGLy(k) x PGLy(k), see Example 5.9. Let Ej, E; be the geometric components of
the unique irreducible curve contracted by any birational contraction n: SH* — QF.
For i =1,...,7, let T;;,T;s € L[z, y] be the homogeneous polynomials defining the fibres
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through the geometric components of the p; contained in E;, Fs, respectively. Let P :=
Ty - Ty and Py := Tyy - - - Tpo. Recall from Example 5.9 that ¢ := n¢n~! is of the form

(OF ([Uo Ul] [Uo Ul]) ([U(]Pl(uov()vulvl> : U1P2(U0U07U1’Ul)]> [UOPQ(UOUmulUl) : Ulpl(uo’Uo, Ulvl)])

Fori=1,...,r, define

Vit ([uo : ua], [vo : v1]) == ([uoTia(uovo, urvr) + ur Tir (uovo, usvy)],
[UoTz‘l(UoUO, U1U1) : U1Tz’2(U0U07 Uﬂh)])
and let
a: ([ug :ur], [ve : v1]) ==+ ([vo @ v1], [wo : u1]).
Then a, ---1; = 1. We take ¢; 1= n~"p;n and o := n~tan. O

Lemma 8.8. Let m: X — P! be a conic fibration from Theorem 1.1(6b) and letn: X —
SEL be the birational morphism blowing up py, . .., py. Let p: SHY —-5 SBL be the invo-
lution from Example 5.9 and let ¢ = ap, - - - 1 be the decomposition into links p; of type
II and an automorphism o € Auty(SYY ) from Lemma 8.7. Then W(nAuty (X, 7)n™")
is generated by the element V(p) = W(p,) + - + U(py).

Proof. Let A = P! be the image of the singular fibres of X. By Proposition 5.10(1-2), we
have

Auty (X, 7) ~ Auty(X/7) x (DEY % Z/2) A Auti(PY, A)),  Auty(X/7) ~ H x {pYon)

where nHy! © Auty (8L /rr). Moreover, any element of G := DY % 7/2 ~ Auty (P, A)
lifts to an element of Autk(SLL ), which lifts via n to an element of Auty (X, 7). It
follows from the definition of W, that ¥ (nGn~ ), W(nHn™") and () are trivial, and
hence that ¥ (n Auty, (X, 7)n~") is generated by ¥(p) = U(p,) + - + U(p1). O

Proof of Proposition 1.7. Let G be an infinite algebraic subgroup of Biry(P?). By Theo-
rem 1.1, it is conjugate by a birational map to a subgroup of Aut(X), where X is one of
the surfaces listed in Theorem 1.1. We now compute (6 Auty (X)) for some birational
map 0: P? --» X. For any birational morphism 7: X — Y to a Mori fibre space Y /B,
we have
(0 Auty (X)07) = U0~ HW(n Auty (X)) T(nh).

For the surfaces X from Theorem 1.1(1)—(5), there exists such a birational morphism 7
such that W(n Auty(X)n~') is trivial by Remark 8.3 and Lemma 8.4, and hence W(0 Auty (X)0~1)
is trivial. Hence, if ¥(G(k)) is not trivial then X is as in Theorem 1.1(6) and (1) follows.

Let X /P! be a conic fibration from Theorem 1.1(6), which is the blow-up n: X — Y
of points py,...,p,eY and Y =F,, n =2 or Y = S&*. By Lemma 8.6 and Lemma 8.8
the image W (n Auty (X)n~') is generated by the element W(y,) + - - + ¥(¢y), where ; is
a link of type II between conic fibrations in the respective class and whose base-point is
of degree deg(p;). In particular, since each factor of the free product is abelian, it follows
that W(6# Auty (X)0~") is generated by T(p,) + -+ V().

By definition of ¥ the image \I/(goz) is non-trivial if and only if deg(p;) = 16. Therefore,

if \If(gor) -+ \If(gpl) is non-trivial, it is the element indexed by the iq,...,7, such

that deg(pik) > 16 and we infer that |{j € {1,...,r} | deg(p;) = deg(p;,)}| is odd for

k=1,...,s. This proves (2). In particular, V(G(k)) ~ Z/27Z. O
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