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Abstract. We show that any infinite algebraic subgroup of the plane Cremona group
over a perfect field is contained in a maximal algebraic subgroup of the plane Cremona
group. We classify the maximal groups, and their subgroups of rational points, up to
conjugacy by a birational map.
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1. Introduction

We study algebraic groups acting birationally and faithfully on a rational smooth pro-
jective surface over a perfect field k. Any choice of birational map from that surface to
the projective plane P2 induces an action of the algebraic group on P2 by birational trans-
formations. Its subgroup of rational points can thus be viewed as a subgroup of the plane
Cremona group BirkpP2q, which motivates the name algebraic subgroup of BirkpP2q. The
full classification - up to conjugacy - of algebraic subgroups of the plane Cremona group is
open over many fields, because classifying the finite algebraic groups is very hard. Here is
a selection of classification results over various perfect fields: [2, 6, 3, 14, 4, 15, 29, 36, 37].
The full classification of maximal algebraic subgroups of BirCpP2q (finite and infinite) can
be found in [5] and the classification of the real locus of infinite algebraic subgroups of
BirRpP2q can be found in [30]. In this article, we restrict ourselves to consider infinite
algebraic subgroups of BirkpP2q over a perfect field k and we classify these groups up to
conjugacy by elements of BirkpP2q and up to inclusion. We also classify their subgroups of
k-rational points up to conjugation by elements of BirkpP2q and up to inclusion. The two
classifications are different as soon as k has a quadratic extension, see Corollary 1.3(2)–(3).
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Let us explain why we work over a perfect field. Given an algebraic subgroup G of
BirkpP2q, the strategy is to find a rational, regular and projective surface on which G acts
by automorphisms and then use a G-equivariant Minimal Model Program to arrive on a
conic fibration or a del Pezzo surface. It then remains to describe the automorphism group
of that surface. Over a perfect field k, regular implies smooth, and a smooth projective
surface over k is a smooth projective surface over the algebraic closure k of k equipped
with an action of the Galois group Galpk{kq of k over k. In particular, the classification
of rational smooth del Pezzo surfaces is simply the classification of Galpk{kq-actions on
smooth del Pezzo surfaces over k with Galpk{kq-fixed points. This is straightforward
if they have degree ě 6, as we will see in §3 and §4. Over an imperfect field, regular
does not imply smooth and a finite field extension may make appear singularities. The
classification of regular del Pezzo surfaces is still open. In characteristic 2, there are regular,
geometrically non-normal del Pezzo surfaces of degree 6 [16, Proposition 14.3, Proposition
14.5] and there are regular del Pezzo surfaces of degree 2 that are geometrically non-
reduced [26, Proposition 3.4.1]. In particular, we cannot use directly the classification
of regular del Pezzo surfaces over a separably closed field to describe the automorphism
group of regular del Pezzo surfaces over an imperfect field, nor directly the classification
of non-normal del Pezzo surfaces given in [28].

Now, assume again that k is a perfect field. Theorem 1.1, Theorem 1.2, Theorem 1.4
and Corollary 1.3 recover the classification results of [5] and [30] over C and R for infinite
algebraic subgroups, and we will see that these results extend without any surprises over
a perfect field with at least three elements. We leave it up to the reader to decide how
surprising they find the results over the field with two elements.

By a theorem of Rosenlicht and Weil, for any algebraic subgroup G of BirkpP2q there
is a birational map P2 99K X to a smooth projective surface X on which G acts by
automorphisms, see Proposition 2.3. It conjugates G to a subgroup of AutpXq, the group
scheme of automorphisms of X, and Gpkq is conjugate to a subgroup of AutkpXq. For a
conic fibration π : X ÝÑ P1 we denote by AutpX, πq Ă AutpXq the subgroup preserving
the conic fibration, by AutpX{πq Ă AutpX, πq its subgroup inducing the identity on P1,
and by AutkpX, πq and AutkpX{πq their k-points. For a Galpk{kq-invariant collection
p1, . . . , pr P Xpkq of points, we denote by AutkpX, p1, . . . , prq, resp. AutkpX, tp1, . . . , pruq,
the subgroup of AutkpXq fixing each pi, resp. preserving the set tp1, . . . , pru. A splitting
field of tp1, . . . , pru is a finite normal extension L{k of smallest degree such that p1, . . . , pr P
XpLq and such that tp1, . . . , pru is a union of GalpL{kq-orbits.

Suppose that k has a quadratic extension L{k and let g be the generator of GalpL{kq »
Z{2. By QL we denote the k-structure on P1

LˆP1
L given by px, yqg “ pyg, xgq. By SL,L1 we

denote a surface obtained by blowing up QL in a point p of degree 2, where L1{k is the
splitting field of p, whose geometric components are not on the same ruling of P1

L ˆ P1
L.

We will show in Lemma 4.12 that its isomorphism class depends only on the isomorphism
classes of L,L1. In Theorem 1.1(6b), we denote by E Ă SL,L1 its exceptional divisor.

Theorem 1.1. Let k be a perfect field and G an infinite algebraic subgroup of BirkpP2q.
Then there is a k-birational map P2 99K X that conjugates G to a subgroup of AutpXq,
with X one of the following surfaces, where no indication of the Galpk{kq-action means
the canonical action.

(1) X “ P2 and AutpP2q » PGL3
(2) X “ F0 and AutpF0q » AutpP1q2 ¸ Z{2 » PGL2

2¸Z{2
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(3) X “ QL and AutpQLq is the k-structure on AutpP1
Lq

2¸Z{2 given by the GalpL{kq-
action pA,B, τqg “ pBg, Ag, τq, where L{k is a quadratic extension.

(4) X “ Fn, n ě 2, and the action of AutpFnq on P1 induces a split exact sequence
1 ÝÑ Vn`1 ÝÑ AutpFnq ÝÑ GL2 {µn ÝÑ 1

where µn “ ta id | an “ 1u and Vn`1 is a vector space of dimension n` 1.
(5) X is a del Pezzo surface of degree 6 with NSpXkq

AutkpXq “ 1. The action of
AutkpXq on NSpXkq induces the split exact sequence

1 Ñ pk˚q2 ÝÑ AutkpXq ÝÑ Sym3ˆZ{2 Ñ 1.
Moreover, we are in one of the following cases.
(a) rk NSpXq “ 1 and there is a quadratic extension L{k and a birational mor-

phism π : XL ÝÑ P2
L blowing up a point p “ tp1, p2, p3u of degree 3 with

splitting field F over k, and one of the following cases holds:
(i) GalpF {kq » Z{3 and the action of AutkpXq on NSpXq induces the split

exact sequence
1 Ñ AutLpP2, p1, p2, p3q

πGalpL{kqπ´1
ÝÑ AutkpXq ÝÑ Z{6 Ñ 1

(ii) GalpF {kq » Sym3 and the action of AutkpXq on NSpXq induces the
split exact sequence

1 Ñ AutLpP2, p1, p2, p3q
πGalpL{kqπ´1

ÝÑ AutkpXq ÝÑ Z{2 Ñ 1,
(b) rk NSpXq ě 2, rk NSpXqAutkpXq “ 1 and X is one of the following:

(i) X is the blow-up of P2 in the coordinate points, and the action of
AutkpXq on NSpXq induces the split exact sequence

1 Ñ pk˚q2 ÝÑ AutkpXq ÝÑ Sym3ˆZ{2 Ñ 1.
(ii) X is the blow-up of F0 in a point p “ tpp1, p1q, pp2, p2qu of degree 2. The

action of AutkpXq on NSpXq induces the exact sequence,
1 Ñ AutkpP1, p1, p2q

2
ÝÑ AutkpXq ÝÑ Sym3ˆZ{2 Ñ 1

which is split if charpkq ‰ 2.
(iii) X is the blow-up of P2 in a point p “ tp1, p2, p3u of degree 3 with splitting

field L such that GalpL{kq » Z{3. The action of AutkpXq on NSpXq
induces the split exact sequence

1 Ñ AutkpP2, p1, p2, p3q ÝÑ AutkpXq ÝÑ Z{6 Ñ 1
(iv) X is the blow-up of P2 in a point p “ tp1, p2, p3u of degree 3 with splitting

field L such that GalpL{kq » Sym3. The action of AutkpXq on NSpXq
induces the split exact sequence

1 Ñ AutkpP2, p1, p2, p3q ÝÑ AutkpXq ÝÑ Z{2 Ñ 1
where Z{2 is generated by a rotation.

(c) rk NSpXqAutkpXq “ 2 and there is a quadratic extension L{k and a birational
morphism ν : X ÝÑ QL contracting two curves onto rational points p1, p2 or
one curve onto a point tp1, p2u of degree 2 with splitting field L1{k. The action
of AutkpXq on NSpXq induces the split exact sequence

1 Ñ TL,L
1

pkq ÝÑ AutkpXq ÝÑ Z{2ˆ Z{2 Ñ 1
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where ν AutkpXqν
´1 “ AutkpQL, tp1, p2uq and TL,L

1 is the subgroup of AutkpQL, p1, p2q

preserving the rulings of QL
L.

(6) π : X ÝÑ P1 is one of the following conic fibrations with
rk NSpXk{P

1
q
AutkpX,πq “ rk NSpX{P1

q
AutkpX,πq “ 1 :

(a) X{P1 is the blow-up of points p1, . . . , pr P Fn, n ě 2, contained in a section
Sn Ă Fn with S2

n “ n. The geometric components of the pi are on pairwise dis-
tinct geometric fibres and

řr
i“1 degppiq “ 2n. There are split exact sequences

pT1{µnq ¸ Z{2 AutpXq

»

||

1 AutpX{πXq AutpX, πXq AutpP1,∆q 1

1 AutkpX{πXq AutkpX, πXq AutkpP1,∆q 1

»

||

pk˚{µnpkqq ¸ Z{2 AutkpXq

where ∆ “ πptp1, . . . , pruq Ă P1, T1 is the split one-dimensional torus and µn
its subgroup of nth roots of unity.

(b) There exist quadratic extensions L and L1 of k such that X{P1 is the blow-
up of SL,L1 in points p1, . . . , pr P E, r ě 1. The pi are all of even degree,
their geometric components are on pairwise distinct geometric components of
smooth fibres and each geometric component of E contains half of the geomet-
ric components of each pi. There are exact sequences

SOL,L1
¸ Z{2 AutpXq

»

||

1 AutpX{πXq AutpX, πXq AutpP1,∆q 1

1 AutkpX{πXq AutkpX, πXq pDL,L1

k ¸ Z{2q X AutkpP1,∆q 1

»

||

SOL,L1
pkq ¸ Z{2 AutkpXq

with ∆ “ πptp1, . . . , pruq Ă P1 and SOL,L1
“ tpa, bq P TL | ab “ 1u, and

‚ if L,L1 are k-isomorphic, then SOL,L1
pkq » ta P L˚ | aag “ 1u

and DL,L1

k » tα P k˚ | α “ λλg, λ P Lu, where g is the generator of
GalpL{kq,

‚ if L,L1 are not k-isomorphic, then SOL,L1
pkq » k˚ and

DL,L1

k » tλλgg
1

P F | λ P K,λλg
1

“ 1u, where k Ă F Ă LL1 is the inter-
mediate extension such that GalpF {kq » xgg1y Ă GalpL{kqˆGalpL1{kq,
where g, g1 are the generators of GalpL{kq,GalpL1{kq, respectively.

We consider a family among (3), (5c), (5a), (5(b)ii), (5(b)iii), (5(b)iv), and (6b) empty
if the point of requested degree or the requested field extension does not exist.

Theorem 1.1(5) is in fact the classification of rational del Pezzo surfaces of degree 6
over k up to isomorphism, and for any of the eight classes there is a field over which a
surface in the class exists, see §4.
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The next theorem lists the conjugacy classes in BirkpP2q of the groups in Theorem 1.
Let G be an affine algebraic group and X{B a G-Mori fibre space (see Definition 2.11). We
call it G-birationally rigid if for any G-equivariant birational map ϕ : X 99K X 1 to another
G-Mori fibre space X 1{B1 we have X 1 » X. In particular, ϕAutpXqϕ´1 “ AutpX 1q. We
call it G-birationally superrigid if any G-equivariant birational map X 99K X 1 to another
G-Mori fibre space X 1{B1 is an isomorphism. If we replace G by Gpkq everywhere, we
get the notion of Gpkq-Mori fibre space, Gpkq-birationally rigid and Gpkq-birationally
superrigid. The following theorem also shows that G-birationally (super)rigid does not
imply Gpkq-birationally (super)rigid.

The del Pezzo surfaces X and the conic fibrations X{P1 in Theorem 1.1 are AutpXq-
Mori fibre spaces, and, except for the del Pezzo surfaces from (5c), they are also AutkpXq-
Mori fibre spaces.

Theorem 1.2. Let k be a perfect field.
(1) Any del Pezzo surface X and any conic fibration X{P1 from Theorem 1.1 is

AutpXq-birationally superrigid.
(2) Any del Pezzo surface X in Theorem 1.1(1)–(4), (5(b)ii)–(5(b)iv) and any conic

fibration X{P1 from (6b) is AutkpXq-birationally superrigid.
(3) Let X be a del Pezzo surface from Theorem 1.1(5a).

If |k| ě 3, then X is AutkpXq-birationally superrigid.
If |k| “ 2, then there is an AutkpXq-equivariant birational map X 99K X 1, where
X 1 is the del Pezzo surface from Theorem 1.1(5(b)ii).

(4) Let X be the del Pezzo surface from Theorem 1.1(5(b)i).
If |k| ě 3, then X is AutkpXq-birationally superrigid.
If |k| “ 2, there are AutkpXq-equivariant birational maps X 99K F0 and X 99K X 1,
where X 1 is the del Pezzo surface of degree 6 from Theorem 1.1(5(b)ii).

(5) Any conic fibration X{P1 from Theorem 1.1(6a) is AutkpXq-birationally superrigid
if k˚{µnpkq is non-trivial. If k˚{µnpkq is trivial and X 99K Y is an AutkpXq-
equivariant birational map to a surface Y from Theorem 1.1, then Y » X.

We say that an algebraic subgroup G of BirkpP2q ismaximal if it is maximal with respect
to inclusion among the algebraic subgroups of BirkpP2q. We say that Gpkq is maximal if
for any algebraic subgroup G1 of BirkpP2q containing Gpkq, we have Gpkq “ G1pkq.

By Theorem 1.2(4), if |k| “ 2 and X is a del Pezzo surface from (5(b)i), then AutkpXq
is not maximal: It is conjugate to a subgroup of AutkpF0q and this inclusion is strict,
because AutkpXq » Sym3ˆZ{2 has 12 elements, whereas AutkpF0q has 72 elements.
Similarly, AutkpXq is not maximal if X is a del Pezzo surface from (5a) and |k| “ 2.

Corollary 1.3. Let k be a perfect field and H an infinite algebraic subgroup of BirkpP2q.
(1) Then H is contained in a maximal algebraic subgroup G of BirkpP2q.
(2) Up to conjugation by a birational map, the maximal infinite algebraic subgroups of

BirkpP2q are precisely the groups AutpXq in Theorem 1.1. Two maximal infinite
subgroups AutpXq and AutpX 1q are conjugate by a biratonal map if and only if
X » X 1.

(3) Hpkq is maximal if and only if it is conjugate to one of the AutkpXq from
‚ (1)–(4), (5(b)ii)–(5(b)iv), (6),
‚ (5a), (5(b)i) if |k| ě 3.

Two such groups AutkpXq and AutkpX
1q are conjugate by a birational map if and

only if X » X 1.
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Theorem 1.4. Let k be a perfect field. The conjugacy classes of the maximal subgroups
AutkpXq of BirkpP2q from Theorem 1.1 are parametrised by

‚ (1), (2): one point
‚ (3): one point for each k-isomorphism class of quadratic extensions of k
‚ (4): one point for each n ě 2
‚ (5(a)i) one point for any pair pL, F q of k-isomorphism classes of quadratic exten-
sions L and Galois extensions F {k with GalpF {kq » Z{3 if |k| ě 3

‚ (5(a)ii): one point for any pair pL, F q of k-isomorphism classes of quadratic ex-
tensions L and Galois extensions F {k with GalpF {kq » Sym3

‚ (5(b)i): one point if |k| ě 3
‚ (5(b)ii): one point for each k-isomorphism class of quadratic extensions of k
‚ (5(b)iii): one point for each k-isomorphism class of Galois extensions F {k with

GalpF {kq » Z{3.
‚ (5(b)iv): one point for any k-isomorphism class of Galois extensions F {k with

GalpF {kq » Sym3.
‚ (6a): for each n ě 2 the set of points tp1, . . . , pru Ă P1 with

řr
i“1 degppiq “ 2n up

to the action of AutkpP1q

‚ (6b): for each n ě 1 and for each pair of k-isomorphism classes of quadratic exten-
sions pL,L1q, the set of points tp1, . . . , pru Ă P1 of even degree with

řr
i“1 degppiq “

2n up to the action of DL,L1

k pkq ¸ Z{2

We show the following consequence of [33] and [40, 39].

Proposition 1.5. For any perfect field k there is a surjective homomorphism
Φ: BirkpP2

q ÝÑ ˚
J

à

I

Z{2,

where J is the set of points of degree 2 in P2 up to AutkpP2q and I is at least countable.
If rk : ks “ 2, then |I| “ |k|.

If k “ R (or more generally rk : ks “ 2) then the abelianisation map of BirRpP2q is a
homomorphism as in Proposition 1.5. By [30, Theorem 1.3] any infinite algebraic group
acting on BirRpP2q that has non-trivial image in the abelianisation is a subgroup of the
group in (6b), and this holds also if rk : ks “ 2. We will show a slightly more general
statement over perfect fields with rk : ks ą 2, for which we need to introduce equivalence
classes of Mori fibre spaces and links of type II.

We call two Mori fibre spaces X1{P1 and X2{P1 equivalent if there is a birational map
X1 99K X2 that preserves the fibration. In particular, if ϕ : X1 99K X2 is a link of type II
between Mori fibre spaces X1{P1 and X2{P1, then these two are equivalent. There is only
one class of Mori fibre spaces birational to the Hirzebruch surface F1 [33, Lemma], because
all rational points in P2 are equivalent up to AutpP2q. We denote by J6 the set of classes of
Mori fibre spaces birational to some SL,L1 , and by J5 the set of classes birational to a blow-
up of P2 in a point of degree 4 whose geometric components are in general position. We
call two Sarkisov links ϕ and ϕ1 of type II between conic fibrations equivalent if the conic
fibrations are equivalent and if the base-points of ϕ and ϕ1 have the same degree. For a
class C of equivalent rational Mori fibre spaces, we denote byMpCq the set of equivalence
classes of links of type II between conic fibrations in the class C whose base-points have
degree ě 16.
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Theorem 1.6 ([33, Theorem 3, Theorem 4]). For any perfect field with rk : ks ą 2 there
is a non-trivial homomorphism
(˚) Ψ: BirkpP2

q ÝÑ
à

χPMpF1q

Z{2 ˚ p ˚
CPJ6

à

χPMpCq

Z{2q ˚ p ˚
CPJ5

à

χPMpCq

Z{2q.

In fact, the homomorphism from Proposition 1.5 for rk : ks ą 2 is induced by the one
in Theorem 1.6.

We show that an infinite algebraic group acting birationally on P2 is killed by the
homomorphism Ψ unless it is conjugate to a group of automorphisms acting on SL,L1 or
a Hirzebruch surface.

Proposition 1.7. Let k be a perfect field with rk : ks ą 2 and let Ψ be the homomorphism
(˚). Let G be an infinite algebraic subgroup of BirkpP2q. Then ΨpGpkqq is of order at most
2 and the following hold.

(1) If ΨpGpkqq is non-trivial, it is contained in the factor indexed by F1 or C P J6 and
there is a G-equivariant birational map P2 99K X that conjugates G to a subgroup
of AutpXq, where X is as in Theorem 1(6a) or (6b), respectively.

(2) Let X{P1 be a conic fibration as in Theorem 1.1(6), which is the blow-up of Fn,
n ě 2, or SL,L1 in points p1, . . . , pr. If ΨpAutkpXqq is non-trivial, it is generated
by the element whose non-zero entries are indexed by the χi that have pi as base-
point, where i P t1, . . . , ru is such that degppiq ě 16 and |tj P t1, . . . , ru | degppjq “
degppiqu| is odd.

The analogous statement to Proposition 1.7 with the homomorphism from Proposi-
tion 1.5 for a perfect field k such that rk : ks “ 2 can be found in [30].

Acknowledgements. The authors would like to thank Andrea Fanelli for interesting
discussions on algebraic groups over perfect and imperfect fields, and Michel Brion for
his comments on regularisation of birational group actions. They would like to thank the
first referee for his careful reading and for pointing out an issue in earlier versions of
Lemma 7.7 and Lemma 7.22, which lead to the addition of Theorem 1.2(3).

2. Surfaces and birational group actions

2.1. Birational actions. Throughout the article, k denotes a perfect field and k an
algebraic closure. By a surface X (or Xk) we mean a smooth projective surface over k
such that Xk :“ XˆSpecpkqSpecpkq is irreducible. We denote by Xpkq the set of k-rational
points of X. The Galois group Galpk{kq acts on X ˆSpecpkq Specpkq through the second
factor. By a point of degree d we mean a Galpk{kq-orbit p “ tp1, . . . , pdu Ă Xpkq of
cardinality d ě 1. The points of degree one are precisely the k-rational points of X. Let
L{k be an algebraic extension of k such that all pi are L-rational points. By the blow up of
p we mean the blow up of these d points, which is a morphism π : X 1 Ñ X defined over k,
with exceptional divisor E “ E1 ` ¨ ¨ ¨ `Ed where the Ei are disjoint p´1q-curves defined
over L, and E2 “ ´d. We call E the exceptional divisor of p. More generally, a birational
map f : X 99K X 1 is defined over k if and only if the birational map f ˆ id : Xk 99K X

1

k is
Galpk{kq-equivariant. In particular, X » X 1 if and only if there is a Galpk{kq-equivariant
isomorphism Xk ÝÑ X 1

k (see also [8, §2.4]).
The surface X being projective and geometrically irreducible implies krXks

˚ “ pkq˚,
so if Xpkq ‰ H we have PicpXkq “ PicpXkq

Galpk{kq [32, Lemma 6.3(iii)]. This holds in
particular if X is k-rational, because then it has a k-rational point by the Lang-Nishimura
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theorem. Since numerical equivalence is Galpk{kq-stable, also algebraic equivalence is, and
hence NSpXkq “ NSpXkq

Galpk{kq. The Galpk{kq-action on NSpXkq factors through a finite
group, that is, its action factors through a finite group. Indeed, since Galpk{kq has only
finite orbits on k, the orbit of any prime divisor of Xk is finite. Then each generator of the
finitely generated Z-module NSpXkq has a finite Galpk{kq-orbit, so the action of Galpk{kq
on the (finite) union of these orbits factors through a finite group.

If not mentioned otherwise, any surface, curve, point and rational map will be defined
over the perfect field k. By a geometric component of a curve C (resp. a point p “
tp1, . . . , pdu), we mean an irreducible component of Ck (resp. one of p1, . . . , pd).

By Châtelet’s theorem, for n ě 1 any smooth projective space X over k with Xpkq ‰ H
such that Xk » Pnk is in fact already isomorphic to Pn over k. This means in particular
that P2 is the only rational del Pezzo surface of degree 9 and that a smooth curve of genus
0 with rational points is isomorphic to P1.

For a surface X, we denote by BirkpXq its group of birational self-maps and by AutkpXq
the group of k-automorphisms of X, which is the group of k-rational points of a group
scheme AutpXq that is locally of finite type over k [10, Theorem 7.1.1] with at most
countably many connected components.

An algebraic group G over a perfect field k is a (not necessarily connected) k-group
variety. In particular, G is reduced and hence smooth [10, Proposition 2.1.12]. We have
Gk “ G ˆSpecpkq Specpkq, on which Galpk{kq acts through the second factor. The defini-
tion of rational actions of algebraic groups on algebraic varieties goes back to Weil and
Rosenlicht, see [35, 31].

Definition 2.1. We say that an algebraic group G acts birationally on a variety X if

(1) there are open dense subsets U, V Ă GˆX and a birational map
GˆX 99K GˆX, pg, xq Þ99K pg, ρpg, xqq

restricting to a isomorphism U Ñ V and the projection of U and V to the first
factor is surjective onto G, and

(2) ρpe, ¨q “ idX and ρpgh, xq “ ρpg, ρph, xqq for any g, h P G and x P X such that
ρph, xq, ρpgh, xq and ρpg, ρph, xqq are well defined.

The group Gpkq of k-points of G is the subgroup of Gk of elements fixed by the Galpk{kq-
action, so we have a mapGpkq ÝÑ BirkpXq. Definition 2.1(2) implies that it is a homomor-
phism of groups, and Definition 2.1(1) is equivalent to the induced mapGpkq ÝÑ BirkpXq,
g ÝÑ fpg, ¨q being a so-called morphism, see [7, Definition 2.1, Definition 2.2], usually
denoted by G ÝÑ BirkpXq by abuse of notation. The notion of morphism from a variety
to BirkpXq goes back to M. Demazure [13] and J.-P. Serre [34].

We say that G is an algebraic subgroup of BirkpXq if G acts birationally on X with
trivial schematic kernel. We say that G acts regularly on X if the birational map in
Definition 2.1(1) is an isomorphism. In that case, G is a subgroup of AutpXq and we call
X a G-surface.

Let G be an algebraic group acting birationally on surfaces X1 and X2 by birational
maps ρi : G ˆXi 99K Xi, i “ 1, 2 as in Definition 2.1. A birational map f : X1 99K X2 is
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called G-equivariant if the following diagram commutes

GˆX1 X1

GˆX2 X2

ρ1

idGˆf f

ρ2

In particular, if ρ̃i : G ÝÑ BirkpXiq denotes the induced morphism, the following diagram
commutes

Gpkq BirkpX1q

BirkpX2q

ρ̃1

ρ̃2
f˝´˝f´1

The following proposition is proven in [7, §2.6] over an algebraically closed field and its
proof can be generalised over any perfect field.

Proposition 2.2 ([7, §2.6]). Any algebraic subgroup of BirkpP2q is an affine algebraic
group.

The following proposition was proven separately by A. Weil and M. Rosenlicht [35, 31],
but neither of them needed the new model to be smooth nor projective. Modern proofs
can also be found in [25] over any field and in [12, 21] over algebraically closed fields.

Proposition 2.3. Let X be a surface and G be an affine algebraic group acting birationally
on X. Then there exists a G-surface Y and a G-equivariant birational map X 99K Y .
Furthermore, Gpkq has finite action on NSpY q.

Proof. By [35, 31], there exists a normal not necessarily projective or smooth G-surface
Y 1 and a G-equivariant birational map X 99K Y 1. The set Y 2 of smooth points of Y 1 is
G-stable, it is contained in a complete surface, which can be desingularised [24], so Y 2 is
quasi-projective. By [9, Corollary 2.14], Y 2 has a G-equivariant completion Y 3. We now
G-equivariantly desingularise Y 3 to obtain the smooth projective surface Y [38, 23] (the
sequence of blow-ups and normalisations over k can be done G-equivariantly).

The second claim is classical and for instance shown in [30, Lemma 2.10] over any
perfect field. �

2.2. Minimal surfaces.

Definition 2.4. Let X be a surface, B a point or a smooth curve and π : X ÝÑ B a
surjective morphism with connected fibres such that ´KX is π-ample. We call π : X ÝÑ B
a rank r fibration, where r “ rk NSpX{Bq.

‚ If B “ pt is a point, the surface X is called del Pezzo surface. Then Xk is isomor-
phic to P1

k ˆ P1
k or to the blow-up of P2

k in at most 8 points in general position.
We call K2

X the degree of X. Note that 1 ď K2
X ď 9.

‚ If B is a curve, then π : X ÝÑ B is called conic fibration; the general geometric
fibre of π is isomorphic to P1

k and a geometric singular fibre of π is the union of
two secant p´1q-curves over k. Moreover, if X is rational, then B “ P1, see for
instance [33, Lemma 2.4].

‚ If r “ 1, then π : X ÝÑ B is called Mori fibre space.
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We may write X{B instead of π : X ÝÑ B. Let X{B and X 1{B1 be conic fibrations. We
say that a birational map ϕ : X 99K X 1 preserves the fibration or is a birational map of
conic fibrations if the diagram

X X 1

B B1

ϕ

»

commutes.

For a surface X, we can run the Galpk{kq-equivariant Minimal Model program on Xk,
because the action of Galpk{kq on NSpXkq is finite. The end result is a Galpk{kq-Mori
fibre space Yk{Bk as in Definition 2.4, which is equivalent to Y {B being a Mori fibre
space.

Example 2.5.
(1) For n ě 0, the Hirzebruch surface Fn is the quotient of the action of pGmq

2 on
pA2zt0uq2 by

pGmq
2
ˆ pA2

zt0uq2 ÝÑ pA2
zt0uq2, pµ, ρq, py0, y1, z0, z1q ÞÑ pµρ´ny0, µy1, ρz0, ρz1q.

The class of py0, y1, z0, z1q is denoted by ry0 : y1; z0 : z1s. The projection πn : Fn ÝÑ
P1 given by ry0 : y1; z0 : z1s ÞÑ rz0 : z1s is a conic fibration and the special section
S´n Ă Fn is given by y0 “ 0.

(2) Let p and p1 be two points of degree 2 in P2 with splitting field L{k and L1{k,
respectively, such that their geometric components are in general position. We
denote by SL,L1 a del Pezzo surface obtained by first blowing up p, p1, and then
contracting the line passing through one of the two points. It has a natural conic
fibration structure SL,L1 ÝÑ P1; the fibres are the strict transforms of the conics
in P2 passing through the two points.

Lemma 2.6. [33, Lemma 6.11] Let L{k be a finite extension. Let p1, . . . , p4, q1, . . . , q4 P

P2pLq such that the sets tp1, . . . , p4u and tq1, . . . , q4u are Galpk{kq-invariant and no three
of the pi and no three of the qi are collinear. Suppose that for any g P Galpk{kq there
exists σ P Sym4 such that pgi “ pσpiq and qgi “ qσpiq for i “ 1, . . . , 4. Then there exists
α P PGL3pkq such that αppiq “ qi for i “ 1, . . . , 4.

Remark 2.7. The argument of [33, Lemma 6.11] can be applied to show the following
analogue of Lemma 2.6 on P1: let F {k be a finite extension and p1, p2, p3, q1, q2, q3 P P1pF q
such that the sets tp1, p3, p3u and tq1, q2, q3u are Galpk{kq-invariant. Suppose that for any
g P GalpF {kq there exists σ P Sym3 such that pgi “ pσpiq and qgi “ qσpiq for i “ 1, 2, 3.
Then there exists α P PGL2pkq such that αppiq “ qi for i “ 1, 2, 3.

Lemma 2.8. [33, Remark 6.1, Lemma 6.13] Let π : X ÝÑ P1 be a Mori fibre space and
suppose that X is rational. Then X is isomorphic to a Hirzebruch surface, to a del Pezzo
surface SL,L1 or to a del Pezzo surface obtained by blowing up a point of degree 4 in P2.

Proposition 2.9. Let X{B be a Mori fibre space. If B is a point, then X is rational if
and only if K2

X ě 5 and Xpkq ‰ H.

Proof. Suppose that d :“ K2
X ě 5 and that Xpkq contains a point r. If d “ 7, then Xk

contains three p´1q-curves, one of which must be k-rational, contradicting rk NSpXq “ 1.
If d “ 8 , the blow-up of r is a del Pezzo surface of degree 7, which has two disjoint
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p´1q-curves over k that are either both k-rational or they make up a Galpk{kq-orbit of
curves. Contracting them induces a birational map over k to a del Pezzo surface of degree
9 with a rational point, which hence is P2. This argument also holds if rk NSpXq “ 2.
Let d “ 6. If r is contained in a curve of negative self-intersection, then that curve is a
k-rational p´1q-curve, contradicting rk NSpXq “ 1. If r is not contained in any curve of
negative self-intersection, the blow-up of r contains a curve with three pairwise disjoint
geometric components of self-intersection ´1. Their contraction yields a birational map
X 99K Y , where Y is a del Pezzo surface of degree 8 with a rational point, so Y is rational
by the argument above. If d “ 5, then again rk NSpXq “ 1 implies that r is not in a p´1q-
curve. After blowing up r we can contract a curve with five pairwise disjoint geometric
components and arrive on a del Pezzo surface of degree 9, which is P2 because it has a
rational point.

Let’s prove the converse implication. IfX is a rational del Pezzo surface, thenXpkq ‰ H
by the Lang-Nishimura theorem. The remaining claim follows from the classification of
Sarkisov links (see definition in Section 7.1) between rational Mori fibre spaces over a
perfect field [19, Theorem 2.6]. Indeed, any birational map between del Pezzo surfaces over
k with Picard rank 1 decomposes into Sarkisov links and automorphisms [19, Theorem
2.5]. The list of Sarkisov links implies the following: for a del Pezzo surface X with
rk NSpXq “ 1 and K2

X ď 4, any Sarkisov link X 99K Y that is not an isomorphism is to
a del Pezzo surface Y , either of degree K2

Y ď 4 and rk NSpY q “ 1, or of degree K2
Y “ 3

and Y carries moreover the structure Y ÝÑ P1 of a Mori fibre space. From the latter, any
Sarkisov link Y 99K Z is to a del Pezzo surface Z of degree ď 4, either with rk NSpZq “ 1
or it preserves the fibration and rk NSpZq “ 2. In particular, X cannot be joined to P2 by
a birational map. �

Lemma 2.10. If X is a del Pezzo surface of degree K2
X ď 5, then AutkpXq is finite.

Proof. It suffices to show the claim for k “ k. Then X is the blow-up of p1, . . . , pr P P2 in
general position with r “ 9 ´K2

X ě 4. It has finitely many p´1q-curves, say n of them,
and the action of AutkpXq on the set of the p´1q-curves induces an exact sequence

1 Ñ AutkpP2, p1, . . . , prq ÝÑ AutkpXq ÝÑ Symn .

Since p1, . . . , pr are in general position and r ě 4, the group AutkpP2, p1, . . . , prq is trivial,
which yields the claim. �

2.3. Relatively minimal surfaces. We now generalise the notion of being a minimal
surface to being minimal relative to the action of an affine algebraic group.

Definition 2.11. LetG be an affine algebraic group, letX be aG-surface and π : X ÝÑ B
a rank r fibration.

(1) If π is G-equivariant and r1 :“ rk NSpXk{Bkq
GkˆGalpk{kq, we call π a G-equivariant

rank r1 fibration. If r1 “ 1 we call it a G-Mori fibre space.
(2) If π is Gpkq-equivariant and r2 :“ rk NSpX{BqGpkq, we call π a G-equivariant rank

r2 fibration. If r2 “ 1 we call it Gpkq-Mori fibre space.

If a rank r fibration X ÝÑ B is G-equivariant, we have r ě r2 ě r1. A G-Mori
fibre space is not necessarily a Gpkq-Mori fibre space, since Gpkq-equivariant does not
imply G-equivariant. Examples are, for instance, the del Pezzo surfaces in Lemma 4.11
and Lemma 4.9 (see also Theorem 1.1(5c)), that are AutpXq-Mori fibre spaces but not
AutkpXq-Mori fibre spaces.
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If G is connected, Blanchard’s Lemma [9, Theorem 7.2.1] implies that a G-Mori fibre
space is a Mori fibre space. However, the affine algebraic groups we are going to work with
are not necessarily connected. All del Pezzo surfaces X of degree 6 in §4 are AutpXq-Mori
fibre spaces, all but two of them are also AutkpXq-Mori fibre spaces and only two of them
are Mori fibre spaces.

Let G be an affine algebraic group and X a G-surface. The action ρ : GˆX ÝÑ X from
Definition 2.1 being defined over k is equivalent to ρ̄ :“ ρ ˆ id : Gk ˆ Xk ÝÑ Xk being
Galpk{kq-equivariant, i.e. ρ̄pg, xqh “ ρ̄pgh, xhq for any h P Galpk{kq, g P Gk, x P Xk. We
can therefore see the G-action on X as the pGalpk{kq ˆGkq-action on Xk

pGalpk{kq ˆGkq ˆXk ÝÑ Xk, ph, g, xq ÞÑ ρ̄pgh, xhq

satisfying ρ̄pgh, xhq “ ρ̄pg, xqh for any h P Galpk{kq, g P Gk, x P Xk.

Remark 2.12. Let G be an affine algebraic group and X a G-surface such that Xk
is rational. By Proposition 2.3, the group Gk and hence also the group Galpk{kq ˆ Gk
has finite action on NSpXkq. We can run the pGalpk{kqˆGkq-equivariant Minimal Model
program on Xk, and by [20, Example 2.18] the end result is a G-Mori fibre space Y {B. We
then restrict to the Gpkq-action on Y and recall that Gpkq has finite action on NSpY q by
Proposition 2.3. Since Y {B is G-equivariant, it is also Gpkq-equivariant, and we can run
the Gpkq-equivariant Minimal Model Program on Y , whose end result is then a Gpkq-Mori
fibre space.

Let us tidy up the direction for classifying the infinite algebraic subgroups of BirkpP2q.

Proposition 2.13. Let G be an infinite algebraic subgroup of BirkpP2q. Then there exists
a G-equivariant birational map P2 99K X to a G-Mori fibre space X{B that is one of the
following:

(1) B is a point and X » P2 or X is a del Pezzo surface of degree 6 or 8.
(2) B “ P1 and there exists a birational morphism of conic fibrations X ÝÑ SL,L1 or

X ÝÑ Fn for some n ě 0.

Proof. By Proposition 2.2, G is an affine algebraic group. By Proposition 2.3, there is a
G-surface X 1 and a G-equivariant birational map φ : P2 99K X 1. We now apply the pGk ˆ

Galpk{kqq-equivariant Minimal Model Program and obtain a G-equivariant birational
morphism X 1 ÝÑ X to a G-Mori fibre space π : X ÝÑ B, see Remark 2.12.

If B is a point, then X is a del Pezzo surface. Since G is infinite, Lemma 2.10 implies
that K2

X ě 6. If K2 “ 7, then Xk contains exactly three p´1q-curves, one of which is
Gk ˆGalpk{kq-invariant, so X is not a G-Mori fibre space. It follows that K2

X P t6, 8, 9u,
and if K2

X “ 9, then X » P2 by Châtelet’s Theorem.
Suppose that B “ P1. Then there is a birational morphism X ÝÑ Y of conic fibrations

onto a Mori fibre space Y {P1. By Lemma 2.8, Y is a Hirzebruch surface, Y » S or Y is the
blow-up of P2 in a point of degree 4 whose geometric components are in general position.
The latter is a del Pezzo surface of degree 5, so by Lemma 2.10 the group AutkpY q is
finite, which does not occur under our hypothesis. It follows that Y » Fn, n ě 0, or
Y » SL,L1 . �

Lemma 2.14.
(1) If X is a del Pezzo surface, then AutpXq is an affine algebraic group.
(2) Let π : X Ñ P1 be a conic fibration such that Xk is rational. Then AutpX, πq is

an affine algebraic group.
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Proof. (1) Let N :“ h0p´KXq. Then AutpXq preserves the ample divisor ´KX , thus it is
conjugate via the embedding | ´KX | : X ãÑ PN´1 to a closed subgroup of AutpPN´1q »

PGLN and is hence affine.
(2) Let G be the schematic kernel of AutpX, πq ÝÑ AutpNSpXqq. If D is an ample

divisor on X, it is fixed by G and hence (as above) G is an affine algebraic group. Since
Xk is rational and has the structure of a conic fibration, we have NSpXq » Zn for some
n ě 2, and it is generated by ´KX , the general fibre and components of the singular
fibres. The (abstract) group H :“ AutpX, πq{G acts faithfully on NSpXq, fixes ´KX and
the general fibre and permutes the components of the singular fibres. It follows that H is
isomorphic (as abstract group) to a subgroup of GLnpZq whose elements have entries in
t0,˘1u. Therefore, H is finite and hence AutpX, πq is an affine algebraic group. �

In particular, if X is a del Pezzo surface, the Galpk{kq-action on AutkpXq is a k-
structure with fixed locus AutkpXq. Similarly, if π : X Ñ P1 is a conic fibration such that
Xk is rational, then the Galpk{kq-action on AutkpX, πq is a k-structure with fixed locus
AutkpX, πq.

Our goal is to classify algebraic subgroups of BirkpP2q up to conjugacy and inclusion.
Proposition 2.13 and Lemma 2.14 imply that it suffices to classify up to conjugacy and
inclusion the automorphism groups of del Pezzo surfaces of degree 6 and 8 and the auto-
morphism groups of certain conic fibrations.

3. Del Pezzo surfaces of degree 8

We now classify the rational del Pezzo surfaces of degree 8. Over an algebraically closed
field, any such surface is isomorphic to the blow-up of P2 in a point or to P1ˆP1. Over R,
there are exactly two rational models of the latter, namely the quadric surfaces given by
w2`x2´y2´z2 “ 0 or w2`x2`y2´z2 “ 0 in P3. The first is isomorphic to P1

RˆP1
R and

the second is the R-form of P1
C ˆ P1

C given by px, yq ÞÑ pyg, xgq, where xgy “ GalpC{Rq.
We now show that the classification is similar over an arbitrary perfect field k.

Definition 3.1. Suppose that k has a quadratic extension L{k. We denote by QL the
k-structure on P1

L ˆ P1
L given by pru0 : u1s, rv0 : v1sq ÞÑ prvg0 : vg1s, rug0 : ug1sq, where g is the

generator of GalpL{kq.

The surface QL is a del Pezzo surface of degree 8 and it is rational by Proposition 2.9
because the point pr1 : 1s, r1 : 1sq P QLpkq.

Lemma 3.2. Let X be a rational del Pezzo surface of degree 8.
(1) We have rk NSpXq “ 2 if and only if X » F0 or X » F1, and rk NSpXq “ 1 if

and only if X » QL for some quadratic extension L{k.
(2) X » QL if and only if for any p P Xpkq there is a birational map X 99K P2 that

is the composition of the blow-up of p and the contraction of a curve onto a point
of degree 2 in P2 whose splitting field is L.

(3) We have QL » QL1 if and only if L and L1 are k-isomorphic.

Proof. (1–2) The surface Xk is a del Pezzo surface of degree 8 over k and is hence iso-
morphic to P1

k ˆ P1
k or to pF1qk. In the latter case, the unique p´1q-curve is Galpk{kq-

invariant, hence X » F1. Suppose that Xk is isomorphic to P1
k ˆ P1

k and consider the
blow-up π1 : Y ÝÑ X of X in a rational point p P Xpkq (such a point exists by Propo-
sition 2.9). Then Y is a del Pezzo surface of degree 7 and Yk has three p´1q-curves, one
of which is the exceptional divisor over the rational point p. The union of the other two
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p´1q-curves C1, C2 Ă Yk is preserved by Galpk{kq, and hence their contraction yields a
birational morphism π2 : Y ÝÑ P2. If each of C1 and C2 is preserved by Galpk{kq, then
ϕ :“ π1π

´1
2 : P2 99K X has two rational base-points. The pencil of lines through each

base-point is sent onto a fibration of X, and Lemma 2.8 implies that X is a Hirzebruch
surface, so X » F0. If C1 YC2 is a Galpk{kq-orbit of curves, then ϕ has a base-point q of
degree 2. By Remark 2.6 we can assume that q is of the form q “ tra1 : 1 : 0s, ra2 : 1 : 0su,
a1, a2 P k. We consider the projection ψ : P2

k 99K P
1
k ˆ P1

k away from q

ψ : rx : y : zs Þ99K prx´ a1y : zs, rx´ a2y : zsq
ψ´1 : pru0 : u1s, rv0 : v1sq Þ99K r´a2u0v1 ` a1v0u1 : ´u0v1 ` v0u1 : pa1 ´ a2qu1v1s

whose inverse ψ´1 has base-point pr1 : 1s, r1 : 1sq. There exists an isomorphism α : Xk
»
ÝÑ

P1
k ˆ P1

k such that αϕ “ ψ. Let ρ be the canonical action of Galpk{kq on P2
k. Then

the action ϕρϕ´1 on Xk corresponds to the k-structure X. It follows that the action of
ψρψ´1 “ αpϕρϕ´1qα´1 on P1

kˆP1
k corresponds to a k-structure isomorphic to X. For any

g P Galpk{kq, we have

ψρgψ
´1 : pru0 : u1s, rv0 : v1sq ÞÑ

#

prvg0 : vg1s, rug0 : ug1sq, if ag1 “ a2

prug0 : ug1s, rvg0 : vg1sq, if ag1 “ a1.

If L “ kpa1, a2q, which is a quadratic extension of k, then the generator g of GalpL{kq
exchanges the geometric components of q, so X » QL.

(3) The surfaces QL and QL1 are isomorphic if and only if there exist birational maps
ϕ : QL 99K P2 and ϕ1 : QL1 99K P2 as in (2) and α P AutkpP2q such that ϕ´1αϕ1 is an
isomorphism. This is the case if and only if the base-points of ϕ´1 and pϕ1q´1 have the
same splitting field. This is equivalent to L and L1 being k-isomorphic. �

In order to be complete, we now show an isomorphism from QL to a quadratic surface
RL in P3. Later on, we will choose to use or announce claims using coordinates in QL or
in RL according to practicality.

Lemma 3.3. Let L “ kpa1q be a quadratic extensions of k and let t2 ` at ` ã “ pt ´
a1qpt´ a2q P krts be the minimal polynomial of a1. The following hold:

(1) Let RL Ă P3
WXY Z be the quadric surface given by WZ “ X2 ` aXY ` ãY 2. Then

P2 99K RL, rx : y : zs Þ99K rx2
` axy ` ãy2 : xz : yz : z2

s

is birational, and RL is isomorphic to QL.
(2) The map QL ÝÑ RL given by

pru0 : u1s, rv0 : v1sq ÞÑ ru0v0pa1 ´ a2q : ´a2u0v1 ` a1u1v0 : ´u0v1 ` u1v0 : pa1 ´ a2qu1v1s

rW : X : Y : Zs ÞÑ prX ´ a1Y : Zs, rX ´ a2Y : Zsq “ prW : X ´ a2Y s, rW : X ´ a1Y sq

is an isomorphism over k.
(3) Let p P QL be a point of degree 2 with splitting field L1 “ kpb1q whose components

are not on the same ruling of QL
L. Let t2 ` bt ` b̃ “ pt ´ b1qpt ´ b2q P krts be the

minimal polynomial of b1 over k.
(a) Then there is an automorphism of QL (resp. RL) that sends p respectively

onto
tprb1 : 1s, rb1 : 1sq, prb2 : 1s, rb2 : 1squ, trb2

1 : b1 : 0 : 1s, rb2
2 : b2 : 0 : 1su

(b) The pencil of p1, 1q-curves in QL through p is given in XL by the pencil of
hyperplanes whose equations are λpW ` bX ` b̃Zq ` µY “ 0 for rλ : µs P P1.
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Proof. (1) The given birational map has a single base-point of degree 2, namely q “ tra1 :
1 : 0s, ra2 : 1 : 0su, and it contracts the line z “ 0. Its image is the quadric surface RL given
by WZ “ X2 ` aXY ` ãY 2, and the inverse map RL 99K P2 is given by the projection
from r1 : 0 : 0 : 0s. So RL » QL by Lemma 3.2(2).

(2) We compose the birational map from (1) and the birational map ψ : P2 99K QL from
the proof of Lemma 3.2(2) whose base-point is tra1 : 1 : 0s, ra2 : 1 : 0su.

(3a) We see from the description of AutkpQLq in Lemma 3.5 that we can assume that p is
not in the ruling of QL

L passing through pr1 : 1s, r1 : 1sq. The birational map ψ : QL 99K P2

from the proof of Lemma 3.2(1) sends p onto a point ψppq in P2 that is not collinear
with tra1 : 1 : 0s, ra2 : 1 : 0su. By Lemma 2.6, there exists an element α P AutkpP2q that
sends ψppq onto trb1 : 0 : 1s, rb2 : 0 : 1su. Then ψ´1αψ P AutkpQLq and sends p onto
tprb1 : 1s, rb1 : 1sq, prb2 : 1s, rb2 : 1squ. We use the isomorphism from (2) to compute its
coordinates in RL.

(3b) The pencil of p1, 1q-curves through p is sent by ψ : QL 99K P2 onto the pencil of
conics through through ra1 : 1 : 0s, ra2 : 1 : 0s, rb1 : 0 : 1s, rb2 : 0 : 1s. It is given by
λpx2`axy` bxz` ãy2` b̃z2q`µyz, and corresponds via ψ to the pencil in the claim. �

Remark 3.4. Let L “ kpa1q be a quadratic extension of k and let t2 ` at ` ã “ pt ´
a1qpt´ a2q P krts be the minimal polynomial of a1. Depending on the characteristic of k,
we can assume the values of a to be 0 or 1:

‚ If the characteristic of k is not 2, then we can assume that a “ 0, namely via the
k-isomorphism t ÞÑ t´ a{2.

‚ If the characteristic of k equals 2, then we can assume that a “ 1. Indeed, as we
assume that k is a perfect field, all elements of k are squares, and so a “ 0 does
not give an irreducible polynomial over k. The k-isomorphism t ÞÑ t{a reduces
a ‰ 0 to a “ 1.

Lemma 3.5. Let L{k be an extension of degree 2 and let g be the generator of GalpL{kq.
The group AutpQLq » AutpRLq is isomorphic to the k-structure on AutpP1

L ˆ P1
Lq »

AutpP1
Lq

2 ¸ xpu, vq
τ
ÞÑ pv, uqy given by the GalpL{kq-action

pA,B, τqg “ pBg, Ag, τq,

where A ÞÑ Ag is the canonical GalpL{kq-action on AutpP1
Lq. Furthermore,

AutkpRL
q » AutkpQ

L
q » tpA,Agq | A P PGL2pLqu ¸ xτy.

Proof. Since QL is the k-structure on QL
L » P1

LˆP1
L, the GalpL{kq-action on the algebraic

group
AutLpQL

q “ AutpP1
L ˆ P1

Lq » AutpP1
Lq

2
¸ xτy

is a k-structure with fixed points AutkpQLq. The automorphism τ commutes with g, and
we have

pA,Bqgpqg, pgq “ pA,Bqgpp, qqg “ ppA,Bqpp, qqqg “ pAp,Bqqg “ pBgqg, Agpgq

for any pA,Bq P AutpP1
Lq

2 and any pp, qq P QL. It follows that pA,Bqg “ pBg, Agq. The
group AutkpQLq is isomorphic to the subgroup of elements of AutpP1

L ˆ P1
Lq commuting

with GalpL{kq, which yields the remaining claim. �

By the following lemma, whenever we contract a curve onto a point of degree 2 in QL

with splitting field L, we can choose the point conveniently.
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Lemma 3.6.
(1) Let p P QL be a point of degree 2 whose geometric components are not on the

same ruling of QL
k » P1

k ˆ P1
k and whose splitting field is L. Then there exists

α P AutkpQLq such that αppq “ tpr1 : 0s, r0 : 1sq, pr0 : 1s, r1 : 0squ.
(2) Let r, s P QLpkq be two rational points not contained in the same ruling of QL

k .
Then there exists α P AutkpQLq such that αprq “ pr1 : 0s, r1 : 0sq and αpsq “ pr0 :
1s, r0 : 1sq.

Proof. Let g be the generator of GalpL{kq.
(2) We have r “ pra : bs, rag : bgsq and s “ prc : ds, rcg : dgsq for some a, b, c, d P L, and

ad ´ cd ‰ 0 because r and s are not on the same ruling of QL. It follows that the map
A : ru : vs ÞÑ rdu´ cv : ´bu` avs is contained in PGL2pLq. Then pA,Agq P AutkpQq and
it sends respectively r and s onto pr1 : 0s, r1 : 0sq and pr0 : 1s, r0 : 1sq.

(1) The point p is of the form tpra : bs, rc : dsq, prcg : dgs, rag : bgsqu for some a, b, c, d P L,
and adg ´ bcg ‰ 0 because its components are not on the same ruling of QL

L. It follows
that the map A defined by ru : vs ÞÑ rdgu ´ cgv : ´bu ` avs is contained in PGL2pLq.
Then pA,Agq P AutkpQLq and it sends p onto tpr1 : 0s, r0 : 1sq, pr0 : 1s, r1 : 0squ. �

Lemma 3.7. Let p “ tp1, p2, p3u and q “ tq1, q2, q3u be points in QL of degree 3 such that
for any h P Galpk{kq there exists σ P Sym3 such that phi “ pσpiq and qhi “ qσpiq. Suppose
that the geometric components of p presp. of qq are in pairwise distinct rulings of QL

L.
Then there exists α P AutkpQLq such that αppiq “ qi for i “ 1, 2, 3.
Proof. Let g be the generator of GalpL{kq. Since p and q are of degree 3, we have pgi “ pi
and qgi “ qi for i “ 1, 2, 3, and therefore pi “ pai, a

g
i q and qi “ pbi, b

g
i q, ai, bi P k,

for i “ 1, 2, 3. By hypothesis, for any h P Galpk{Lq there exists σ P Sym3 such that
pahi , a

gh
i q “ phi “ qσpiq “ pbσpiq, b

g
σpiqq. We apply Remark 2.7 to the GalpL̄{Lq-invariant

sets ta1, a2, a3u and tb1, b2, b3u in P1
L and to the GalpL̄{Lq-invariant sets tag1, ag2, ag3u and

tbg1, b
g
2, b

g
3u in P1

L. There exist A,B P PGL2pLq such that Aai “ bi and Bagi “ bgi for
i “ 1, 2, 3. Then Agagi “ pAaiq

g “ bgi “ Bagi for i “ 1, 2, 3, and therefore B “ Ag. It
follows that α P AutkpQLq. �

4. Del Pezzo surfaces of degree 6

In this section, we classify the rational del Pezzo surfaces of degree 6 over a perfect field
k and describe their automorphism groups.

4.1. Options for rational del Pezzo surfaces of degree 6. Let X be a rational del
Pezzo surface of degree 6. Then Xk is the blow up of three points in P2

k, its p´1q-curves
are the three exceptional divisors and strict transforms of the lines passing through two of
the three points, and they form a hexagon. The hexagon of Xk is Galpk{kq-invariant. The
Galois group Galpk{kq acts on the hexagon by symmetries, so we have a homomorphism
of groups

Galpk{kq ρ
ÝÑ Sym3ˆZ{2 Ď AutpNSpXkqq.

By hexagon of X we mean the hexagon of Xk endowed with it canonical Galpk{kq-action.
The options for the non-trivial action of ρpGalpk{kqq on the hexagon of X are visualised
in Figure 1.

The groups AutpXq and AutkpXq act by symmetries on the hexagon of Xk and X,
respectively, which induces homomorphisms

AutpXq ÝÑ Sym3ˆZ{2, AutkpXq
ρ̂
ÝÑ Sym3ˆZ{2.



ALGEBRAIC SUBGROUPS OF THE PLANE CREMONA GROUP 17

(1) (2) (3) (4) (5)

(6) (7) (8) (9)

Figure 1. The Galpk{kq-actions on the hexagon of a rational del Pezzo
surface of degree 6.

We now go through the cases in Figure 1. We will see that (1), (6), and (8) admit a
birational morphism to P2 and that (2), (3), (4), and (5) admit a birational morphism to
QL or F0.

4.2. The del Pezzo surfaces in Figures 1(1), 1(6), and 1(8). The following state-
ment is classical over algebraically closed fields and is proven analogously over a perfect
field k.

Lemma 4.1. Let X be a del Pezzo surface of degree 6 such that ρpGalpk{kqq “ t1u as
indicated in Figure 1(1)

(1) Then X is rational and isomorphic to
tprx0 : x1 : x2s, ry0 : y1 : y2sq P P2

k ˆ P2
k | x0y0 “ x1y1 “ x2y2u.

(2) The action of AutkpXq on the hexagon of X induces the split exact sequences

1 Ñ T2 Ñ AutpXq Ñ Sym3ˆZ{2 Ñ 1, 1 Ñ T2pkq Ñ AutkpXq
ρ̂
Ñ Sym3ˆZ{2 Ñ 1

where T2 is a 2-dimensional split torus, Z{2 is generated by the image of
prx0 : x1 : x2s, ry0 : y1 : y2sq ÞÑ pry0 : y1 : y2s, rx0 : x1 : x2sq

and Sym3 is generated by the image of
prx0 : x1 : x2s, ry0 : y1 : y2sq ÞÑ prx1 : x0 : x2s, ry1 : y0 : y2sq

prx0 : x1 : x2s, ry0 : y1 : y2sq ÞÑ prx0 : x2 : x1s, ry0 : y2 : y1sq.

(3) X ÝÑ ˚ is a AutkpXq-Mori fibre space.

Proof. Contracting three disjoint curves in the hexagon of X yields a birational morphism
onto a del Pezzo surface Z of degree 9, and since the images of the three contracted curves
are rational points, we have Z » P2. Choosing the three points to be the coordinate points
yields (1). Any element of kerpρ̂q is conjugate via the contraction to an element of AutkpP2q

fixing the coordinate points and vice-versa, so kerpρ̂q » T2pkq. The generators given in (2)
can be verified with straightforward calculations. It follows that AutkpXq acts transitively
on the sides of the hexagon, hence X is an AutkpXq-Mori fibre space. �

Over k, all rational del Pezzo surfaces of degree 6 are isomorphic. Therefore, by Lemma 4.1,
for any del Pezzo surface X of degree 6, we have rk NSpXkq

AutkpXq “ 1 and hence X is an
AutpXq-Mori fibre space. Moreover, AutpXq is a k-structure on pk˚q2¸pSym3ˆZ{2q. We
will however encounter two rational del Pezzo surfaces of degree 6 that are not AutkpXq-
Mori fibre spaces, see Lemma 4.11 and Lemma 4.9.
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Lemma 4.2. Let X be a rational del Pezzo surface of degree 6 such that ρpGalpk{kqq “
Z{3 as indicated in Figure 1(6)

(1) There exists a point p “ tp1, p2, p3u in P2 of degree 3 with splitting field L such
that GalpL{kq » Z{3 and such that X is isomorphic to the blow-up of P2 in p.

(2) X is isomorphic to the graph of a quadratic involution ϕp P BirkpP2q with base-
point p, and any two such surfaces are isomorphic if and only if the corresponding
field extensions are k-isomorphic.

(3) The action of AutkpXq on the hexagon of X induces a split exact sequence

1 Ñ AutkpP2, p1, p2, p3q Ñ AutkpXq
ρ̂
Ñ Z{6 “ xρ̂pαq, ρ̂pβqy Ñ 1

where α is the lift of an element of AutkpP2, tp1, p2, p3uq of order 3 and β is the
lift of ϕp.

(4) X ÝÑ ˚ is an AutkpXq-Mori fibre space.

Proof. (1) The hexagon of X is the union of two curves C1 and C2, each of whose three
geometric components are disjoint. For i “ 1, 2, the contraction of Ci yields a birational
morphism πi : X Ñ P2 which contracts the curve onto a point of degree 3. By Lemma 2.6
we can assume it is the same point for i “ 1, 2, which we call p “ tp1, p2, p3u. It remains to
see that GalpL{kq » Z{3, where L is any splitting field of p. Since ρpGalpk{kqq » Z{3, the
action of GalpL{kq on tp1, p2, p3u induces an exact sequence 1 ÝÑ H ÝÑ GalpL{kq ÝÑ
Z{3 ÝÑ 1. The field L1 :“ ta P L | hpaq “ a @ h P Hu is an intermediate field between
L and k, over which p1, p2, p3 are rational. The minimality of L implies that L1 “ L and
hence H “ t1u [27, Corollary 2.10].

(2) The fact that any two such surfaces X are isomorphic if and only if the respective
field extensions are k-isomorphic follows from Remark 2.6. The map ϕp :“ π2π

´1
1 P

BirkpP2q is of degree 2 and p is the base-point of ϕp and ϕ´1
p . By Lemma 2.6 we can

assume that ϕp has a rational fixed point r and that it contracts the line through pi, pj
onto pk, where ti, j, ku “ t1, 2, 3u. These conditions imply that ϕp is an involution, and
by construction of ϕp, the surface X is isomorphic to the graph of ϕp.

(3) The kernel kerpρ̂q is conjugate via π1 to the subgroup of AutkpP2q fixing p1, p2, p3.
The only non-trivial elements of Sym3ˆZ{2 commuting with ρpGalpk{kqq are rotations,
so ρ̂pAutkpXqq Ď Z{6. The involution ϕp P BirkpP2q lifts to an automorphism β inducing
a rotation of order 2. If xσy “ Z{3, there exists α̃ P AutkpP2q such that α̃ppiq “ pσpiq,
i “ 1, 2, 3, and α̃prq “ r, where r is the fixed point of ϕp, see Lemma 2.6. Then α̃3 and
α̃ϕpα̃

´1ϕp are linear and fix r, p1, p2, p3, and hence α̃ is of order 3 and α̃ and ϕp commute.
The lift α of α̃ is an automorphism commuting with β and inducing a rotation of order 3.

(4) Since AutkpXq contains an element inducing a rotation of order 6 on the hexagon,
we have rk NSpXqAutkpXq “ 1. �

Lemma 4.3. Let X be a rational del Pezzo surface of degree 6 such that ρpGalpk{kqq “
Sym3 as indicated in Figure 1(8)

(1) There exists a point p “ tp1, p2, p3u in P2 of degree 3 with splitting field L such
that GalpL{kq » Sym3 and such that X is isomorphic to the blow-up of P2 in p.

(2) X is isomorphic to the graph of a quadratic involution ϕp P BirkpP2q with base-
point p, and any two such surfaces are isomorphic if and only if the corresponding
field extensions are k-isomorphic.

(3) The action of AutkpXq on the hexagon of X induces a split exact sequence

1 Ñ AutkpP2, p1, p2, p3q Ñ AutkpXq
ρ̂
Ñ Z{2 “ xρ̂pαqy Ñ 1
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where α is the lift of ϕp onto X.
(4) X ÝÑ ˚ is an AutkpXq-Mori fibre space.

Proof. (1) and (2) are proven analogously to Lemma 4.2(1) and 4.2(2).
(3) The kernel of ρ̂ is conjugate to AutkpP2, p1, p2, p3q via the birational morphism

X ÝÑ P2 that contracts one curve in the hexagon of X onto p. Any element of AutkpXq
induces a symmetry of the hexagon that commutes with the Galpk{kq-action on the
hexagon, hence ρ̂pAutkpXqq is contained in the factor Z{2 generated by a rotation of
order 2. The quadratic involution ϕp lifts to an automorphism α of X and ρ̂pαq is a
rotation of order 2.

(4) Since ρ̂pαq exchanges the two curves in the hexagon, we have rk NSpXqAutkpXq “

1. �

Example 4.4. A del Pezzo surface as in Lemma 4.2 exists: let |k| “ 2 and L{k be the
splitting field of ppXq “ X3 ` X ` 1, i.e. |L| “ 8. Then σ : a ÞÑ a2 generates GalpL{kq
[27, Theorem 6.5]. If ζ a root of P , then σpζ4q “ ζ and hence the point tr1 : ζ : ζ4s, r1 :
ζ2 : ζs, r1 : ζ4 : ζ2su is of degree 3, its components are not collinear and they are cyclically
permuted by σ.
Example 4.5. A del Pezzo surface as in Lemma 4.3 exists: let k “ Q, ζ :“ 2 1

3 and
ω “ e

2πi
3 . Then L :“ Qpζ, ωq is a Galois extension of Q of degree 6 and GalpL{kq »

Sym3 is the group of k-isomorphisms of L sending pζ, ωq respectively to pζ, ωq, pωζ, ωq,
pζ, ω2q, pωζ, ω2q, pω2ζ, ωq, pω2ζ, ω2q [27, Example 2.21]. The point trζ : ζ2 : 1s, rωζ : ω2ζ2 :
1s, rω2ζ : ωζ2 : 1su is of degree 3, its components are not collinear and any non-trivial
element of GalpL{kq permutes them non-trivially.

A del Pezzo surfaces as in Lemma 4.3 cannot exist over a finite field, because Galois
groups of finite extensions of finite fields are always cyclic.
4.3. The del Pezzo surface in Figures 1(7) and 1(9). Recall that the two del Pezzo
surfaces of degree 6 in Lemma 4.2 and Lemma 4.3 are the blow-up of a point p P P2 of
degree 3.
Lemma 4.6. Let X be a rational del Pezzo surface with ρpGalpk{kqq “ Z{6 as in Fig-
ure 1(7). Then X ÝÑ ˚ is a Mori fibre space and

(1) there exists a quadratic extension L{k such that XL is isomorphic to the del
Pezzo surface of degree 6 from Lemma 4.2 (see Figure 1p5q), which is the blow-up
π : XL ÝÑ P2

L of a point p “ tp1, p2, p3u of degree 3 with splitting field F such that
GalpF {kq » Z{3.

(2) πGalpL{kqπ´1 acts rationally on P2
L; it is not defined at p, sends a general line

onto a conic through p and acts on AutLpP2, tp1, p2, p3uq by conjugation.
(3) Any two such surfaces are isomorphic if and only if the corresponding field exten-

sions of degree two and three are k-isomorphic.
(4) The action of AutkpXq on the hexagon of X induces a split exact sequence

1 ÝÑ AutLpP2, p1, p2, p3q
πGalpL{kqπ´1

ÝÑ AutkpXq ÝÑ Z{6 “ xρ̂pαq, ρ̂pπ´1ϕpπqy ÝÑ 1
where α is the lift of an element in AutLpP2, tp1, p2, p3uq

πGalpL{kqπ´1 of order 3 and
ϕp P BirLpP2q a quadratic involution with base-point p.

Proof. All p´1q-curves of Xk are in the same Galpk{kq-orbit and hence X ÝÑ ˚ is a Mori
fibre space.

(1) Since X is rational, it contains a rational point r P Xpkq, see Proposition 2.9,
which is in particular not contained in the hexagon of X. Let η1 : Y ÝÑ X be its blow-up
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and Er its exceptional divisor. Then Yk contains an orbit of three p´1q-curves C1, C2, C3
intersecting Er, each intersecting two opposite sides of the hexagon. The contraction of
C :“ C1 Y C2 Y C3 yields a birational morphism η2 : Y ÝÑ Z onto a rational del Pezzo
surface of degree 8. The birational map η2η

´1
1 conjugates the Galpk{kq-action on Z to an

action that exchanges the fibrations of Zk and hence Z » QL for some quadratic extension
L{k, by Lemma 3.2(1). Figure 2 shows the action of ρpGalpk{kqq on the image by η2η

´1
1

of the hexagon of X. Then η2η
´1
1 conjugates the Galpk{Lq-action on QL

L to an action on

d

X

r

C
η2η

´1
1

‚

‚

‚

Er

Z » QL

Figure 2. The Galpk{kq-action on Zk » QL
k .

the hexagon with ρpGalpk{Lqq “ Z{3. Lemma 4.2 implies (1).
(3) By Lemma 3.7, AutkpQLq acts transitively on the set of points of degree 3 in QL

with k-isomorphic splitting fields and whose geometric components are in general position.
This yields the claim.

(2) Write GalpL{kq “ xgy. Then g exchanges opposite edges of the hexagon and thus
ρg :“ πgπ´1 acts rationally on P2; it is not defined at p, contracts the lines through any
two of p1, p2, p3 onto the third of these three and it sends a general line onto a conic
through p. It follows that for β P AutLpP2, tp1, p2, p3uq the map ρgβρg is contained in
AutLpP2q and preserves tp1, p2, p3u.

(4) The automorphisms ofX are the automorphisms ofXk commuting with the Galpk{kq-
action, hence ρ̂pAutkpXqq Ď Z{6. SinceX is rational, GalpL{kq has a fixed point r P Xpkq.
Let ϕp P BirLpP2q be the quadratic involution from Lemma 4.2(3) such that Φp :“
π´1ϕpπ P AutLpXq induces a rotation of order 2 on the hexagon of XL. By Lemma 2.6, we
can assume that ϕp fixes πprq P P2pLq. Then ΦpgΦpg P AutLpXq, preserves the edges of
the hexagon and fixes r. It therefore descends to an element of AutLpP2, p1, p2, p3q fixing r
and is hence equal to the identity. It follows that Φp P AutkpXq. By Lemma 4.2(3), there
is an element of α̃ P AutLpP2, tp1, p2, p3uq of order 3 inducing a rotation of order 3 on the
hexagon of XL, and again we can assume that it fixes πprq P P2pLq. We argue as above
that α :“ π´1α̃π P AutkpXq, and it follows that the sequence is split. Finally, any element
of kerpρ̂q preserves each edge of the hexagon and is therefore conjugate by π to an element
of AutLpP2, p1, p2, p3q commuting with ρg, and any element of AutLpP2, p1, p2, p3q

ρg lifts
to an element of kerpρ̂q. �

Lemma 4.7. Let X be a rational del Pezzo surface with ρpGalpk{kqq “ Sym3ˆZ{2 as in
Figure 1(9). Then X ÝÑ ˚ is a Mori fibre space and

(1) there exists a quadratic extension L{k such that XL is isomorphic to the del
Pezzo surface of degree 6 from Lemma 4.3 (see Figure 1p7q), which is the blow-up
π : XL ÝÑ P2

L of a point p “ tp1, p2, p3u of degree 3 with splitting field F such that
GalpF {kq » Sym3.

(2) πGalpL{kqπ´1 acts rationally on P2; it is not defined at p, sends a general line
onto a conic through p and acts on AutLpP2, tp1, p2, p3uq by conjugation.

(3) Any two such surfaces are isomorphic if and only if the corresponding field exten-
sions of degree two and six are k-isomorphic.
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(4) The action of AutkpXq on the hexagon of X induces a split exact sequence

1 ÝÑ AutLpP2, p1, p2, p3q
πGalpL{kqπ´1

ÝÑ AutkpXq ÝÑ Z{2 “ xρ̂pπ´1ϕpπqy ÝÑ 1,
where ϕp P BirLpP2q is a quadratic involution with base-point p.

Proof. This is proven analogously to Lemma 4.6. �

Example 4.8. Rational del Pezzo surfaces of degree 6 over k as in Lemma 4.6 and
Lemma 3.2 exist: in Example 4.4 and Example 4.5, there is a point p P P2 of degree 3 with a
splitting field F {k that is Galois over k such that GalpF {kq » Z{3 or GalpF {kq » Sym3,
and the blow-up π : Y ÝÑ P2 of p is a rational del Pezzo surface of degree 6 as in
Figure 1(6) or (8). The point p is also a point of degree 3 in P2

L with splitting field FL{L
because GalpFL{Lq » GalpF {kq [27, Theorem 5.5].

By Lemma 4.2(2) and Lemma 4.3(2) there exists a quadratic involution ϕp P BirkpP2q

such that Φ :“ π´1ϕpπ P AutkpY q induces a rotation of order 2. By Lemma 2.6, we can
assume that ϕp has a rational fixed point r P P2pkq. Let g be the generator of GalpL{kq
and define ψg :“ Φ˝g “ g ˝Φ. The group xψgy acts on YL with fixed point π´1prq P YLpLq
and it induces a rotation of order 2 on the hexagon of YL. It follows that GalpL{kq » xψgy
defines a k-structure X on YL, which is rational by Proposition 2.9. It follows that the
group Galpk{kq acts on the hexagon of YL by Z{6 or by Sym3ˆZ{2.

4.4. The del Pezzo surfaces in Figures 1(3) and 1(4).

Lemma 4.9. Let X be a del Pezzo surface of degree 6 such that ρpGalpk{kqq is generated
by a reflection as indicated in Figure 1(3). Then X is rational and

(1) there is a quadratic extension L{k and a birational morphism η : X ÝÑ QL con-
tracting the two k-rational curves in the hexagon onto p1 “ pr1 : 0s, r1 : 0sq and
p2 “ pr0 : 1s, r0 : 1sq.

(2) Any two such surfaces are isomorphic if and only if the respective quadratic exten-
sions are k-isomorphic.

(3) The action of AutkpXq on the hexagon of X induces a split exact sequence

1 Ñ TLpkq ÝÑ AutkpXq
ρ̂
ÝÑ xρ̂pαqy ˆ xρ̂pβqy Ñ 1,

where ηTLpkqη´1 Ď AutkpQL, p1, p2q is the subgroup preserving the ruling of QL,
and the automorphisms α : pu, vq ÞÑ p 1

v
, 1
u
q and β : pu, vq ÞÑ p 1

u
, 1
v
q.

(4) rk NSpXqAutkpXq “ 2 and ηAutkpXqη
´1 “ AutkpQL, tp1, p2uq. In particular, X ÝÑ

˚ is not an AutkpXq-Mori fibre space.

Proof. (1) The hexagon of X has exactly two k-rational curves C1, C2, which are moreover
disjoint. Their contraction yields a birational morphism η : X ÝÑ Z onto a del Pezzo
surface Z of degree 8 with two rational points. By Proposition 2.9, Z is rational and
by Lemma 3.2(1) we have Z » QL. We can assume that C1, C2 are contracted onto
p1 “ pr1 : 0s, r1 : 0sq and p2 “ pr0 : 1s, r0 : 1sq by Lemma 3.6(2).

(2) Any two rational points on QL that are not on the same ruling of QL
L can be sent

onto each other by an element of AutkpQLq by Lemma 3.6(2). It follows that any two
del Pezzo surfaces satisfying our hypothesis are isomorphic if and only if they have a
birational contraction to isomorphic del Pezzo surfaces QL and QL1 of degree 8. This is
the case if and only if L and L1 are k-isomorphic by Lemma 3.2(3).

(3) The kernel of ρ̂ is the subgroup of AutkpXq of elements preserving C1, C2 and hence
its conjugate η kerpρ̂qη´1 Ď AutkpQL, p1, p2q is the subgroup preserving the rulings of QL.
The only non-trivial automorphisms of Xk commuting with the Galpk{kq-action induce
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a rotation of order 2 or a reflection that preserves C1 Y C2. Let L{k be an extension
of degree 2 such that QL

L » P1
L ˆ P1

L. The involution α P AutkpQLq exchanges p1, p2
and the rulings of QL

L, it thus lifts to an automorphism of X inducing a reflection. The
involution β P AutkpQLq exchanges p1, p2 and preserves the rulings of QL

L, it thus lifts
to an involution of X inducing a rotation of order 2 on the hexagon. The involutions
α, β P AutkpQLq commute, hence their lifts commute, which yields the splitness of the
sequence.

(4) It follows from (3) that any automorphism of X preserves C1 Y C2, and since
η´1αη P AutkpXq exchanges C1, C2, we have rk NSpXqAutkpXq “ 2. �

The R-version of Lemma 4.9(3) in [30, Proposition 3.4] states that the kernel is SOpRq,
but it should be TQpRq » SOpRq ˆ Rą0.

Lemma 4.10. Let X be a rational del Pezzo surface of degree 6 such that ρpGalpk{kqq
is generated by a rotation of order 2 as indicated in Figure 1(4). Then there exists a
quadratic extension L “ kpa1q of k such that

(1) X is isomorphic to the blow-up of F0 in the point tra1 : 1; a1 : 1s, ra2 : 1; a2 : 1su of
degree 2 and

X » tpru0 : u1s, rv0 : v1s, rw0 : w1sq P pP1
q
3
| w0ãpu0v0`au1v0` ãu1v1q “ w1pu0v1´x1v0qu

where t2 ` at` ã “ pt´ a1qpt´ a2q P krts is the minimal polynomial of a1 over k.
(2) Any two such surfaces are isomorphic if and only if the respective quadratic exten-

sions are k-isomorphic.
(3) The action of AutkpXq on the hexagon induces an exact sequence,

1 Ñ AutkpP1, p1, p2q
2
Ñ AutkpXq

ρ̂
Ñ Sym3ˆZ{2 Ñ 1,

which is split if charpkq ‰ 2, Z{2 “ xρ̂pα̃qy and Sym3 “ xρ̂pβ̃q, ρ̂pϕ̃qy, where α̃, β̃, ϕ̃
are the lifts of the involutions of F0

α : ry0 : y1; z0 : z1s ÞÑry0 ` ay1 : ´y1; z0 ` az1 : ´z1s,

β : ry0 : y1; z0 : z1s ÞÑrz0 : z1; y0 : y1s,

ψ : ry0 : y1; z0 : z1s Þ99Kry0 ` ay1 : ´y1; ãpy1z0 ´ y0z1q : y0z0 ` ay0z1 ` ãy1z1s.

(4) X ÝÑ ˚ is an AutkpXq-Mori fibre space.

Proof. (1) Let C1, C2, C3 be the curves in the hexagon of X. By Lemma 3.2(1), for i “
1, 2, 3, there is a birational morphism πi : X Ñ F0 contracting Ci onto a point of degree
2. Let L{k be a quadratic extension such that GalpL{kq acts by the rotation of order
2. Then Galpk{Lq preserves each Ci, hence L is the splitting field of each Ci. So, L is
also the splitting field of each πipCiq. Let L “ kpa1q for some a1 P L. For i “ 1, 2, 3 we
write πipCiq “ trbi1 : 1; bi2 : 1s, rbi3 : 1; bi4 : 1su for some bi1, . . . , bi4 P L. Since the two
components of πipCiq are not contained in the same fibre of F0, Remark 2.7 implies that
there is Ai P PGL2pkq that sends rbi1 : 1s, rbi3 : 1s onto ra1 : 1s, ra2 : 1s. Similarly, there is
Bi P PGL2pkq that sends rbi2 : 1s, rbi4 : 1s onto ra1 : 1s, ra2 : 1s. Up to changing the rulings
on F0, we can assume that ϕ :“ π2π

´1
1 : F0 99K F0 preserves the ruling given by the first
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projection, as indicated in the following commutative diagram.
X

π1 π2

‚

‚

p1

p2F0

‚

‚

p1

p2

F0
ϕ

Up to an isomorphism of the first factor, we can assume that ϕ induces the identity map
on P1. It then sends a general fibre f of the second projection onto a curve of bidegree
p1, 1q passing through q, which is given by λpy0z1´ y1z0q`µpy0z0`ay1z0` ãy1z1q “ 0 for
some rλ : µs P P1. So, up to left-composition by an automorphism of the second factor, ϕ
is the involution given by

ϕ : ry0 : y1; z0 : z1s Þ99K ry0 : y1; ãpy0z1 ´ y1z0q : y0z0 ` ay1z0 ` ãy1z1s.

By construction of ϕ, X is isomorphic to its graph inside pP1q4. The projection forgetting
the third factor induces the isomorphism in (1).

(2) As indicated in (1), any two points of degree 2 in F0 whose geometric components
are not in the same ruling can be sent onto each other by an element of AutkpF0q. It
follows that two del Pezzo surfaces X and X 1 satisfying the hypothesis of our lemma are
isomorphic if and only if there are contractions X ÝÑ F0 and X 1 ÝÑ F0 that contract
a curve in each hexagon onto points with k-isomorphic splitting fields. This is equivalent
to contracted curves having k-isomorphic splitting fields.

(3) The group π1 kerpρ̂qπ´1
1 is the subgroup of AutkpF0q fixing rai : 1; ai : 1s for

i “ 1, 2 and preserving the fibration given by the first projection, hence π1 kerpρ̂qπ´1
1 »

AutkpP1, ra1 : 1s, ra2 : 1sq2. The involution α P AutkpF0q (it is not the identity map by
Remark 3.4) preserves the fibrations of F0 and exchanges ra1 : 1; a1 : 1s and ra2 : 1; a2 : 1s.
Thus it lifts to an involution α̃ P AutkpXq inducing a rotation of order 2 on the hexagon.
The involution β P AutkpF0q exchanges the fibrations of F0 and fixes rai : 1; ai : 1s for
i “ 1, 2, thus lifts to an involution β̃ P AutkpXq inducing the reflection at the axis through
C1. We check that ψ :“ ϕ ˝ α. Since ϕ induces the reflection on the hexagon that ex-
changes the components of C3, ψ induces the reflection preserving each component of C3.
It follows that the sequence is exact. If charpkq ‰ 2, we have a “ 0, and then ψ is an
involution, α commutes with β and ψ, and β ˝ψ has order 3. It follows that the sequence
is split.

(4) Since AutkpXq acts transitively on the edges of the hexagon,X ÝÑ ˚ is an AutkpXq-
Mori fibre space. �

4.5. The del Pezzo surfaces in Figures 1(2) and 1(5). Here, we consider the re-
maining two del Pezzo surfaces of degree 6 from Figure 1. We will see that none of them
is a AutkpXq-Mori fibre space. However, they carry a conic fibration, and we will describe
the automorphism group preserving the fibration in this section, which will be used in the
Section 5.

Lemma 4.11. Let X be a rational del Pezzo surface of degree 6 such that ρpGalpk{kqq is
generated by a reflection as indicated in Figure 1(2). There exists a quadratic extension
L “ kpa1q{k such that the following holds:
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(1) There is a birational morphism η : X ÝÑ RL » QL contracting an irreducible E
curve onto the point ηpEq “ tra2

1 : a1 : 1 : 0s, ra2
2 : a2 : 1 : 0su “ tp1, p2u of degree

2.
(2) X » tprw : x : y : zs, ru : vsq | vpw ` ax` ãzq “ uyu Ă RL ˆ P1

(3) The action of AutkpXq on the hexagon of X induces a split exact sequence

1 Ñ TL,Lpkq ÝÑ AutkpXq
ρ̂
ÝÑ xρ̂pαqy ˆ xρ̂pβqy Ñ 1

where TL,Lpkq Ă AutkpRL, p1, p2q is the subgroup preserving the rulings of RL
L,

and ρ̂pαq is the reflection exchanging the singular fibres and ρ̂pβq is a rotation of
order 2 with

ηαη´1 : rw : x : y : zs ÞÑ rw : x` ay : ´y : zs
ηβη´1 : rw : x : y : zs ÞÑ rw ` ap2x` az ` ayq : ´px` azq : ´y : zs

where t2 ` at` ã “ pt´ a1qpt´ a2q P krts is the minimal polynomial of a1 over k.
(4) We have rk NSpXqAutkpXq “ 2 and ηAutkpXqη

´1 “ AutkpRL, tp1, p2uq. In partic-
ular, X ÝÑ ˚ is not an AutkpXq-Mori fibre space.

Proof. (1) By Lemma 3.2(1), contracting E yields a birational morphism ν : X ÝÑ QL.
The splitting field of the image of E is L, so we can choose νpEq “ tpr1 : 0s, r0 : 1sq, pr0 :
1s, r1 : 0squ by Lemma 3.6(1). Changing the model of QL with the isomorphism from
Lemma 3.3(2), we get the birational morphism η : X ÝÑ RL and ηpEq “ tra2

1 : a1 : 1 :
0s, ra2

2 : a2 : 1 : 0su.
(4) Any element of AutkpXq preserves E. It follows that rk NSpXqAutkpXq “ 2 and that

ν AutkpXqν
´1 “ AutkpQL, tp1, p2uq.

(3) The conjugate ν kerpρ̂qν´1 Ď AutkpQL, pr1 : 0s, r0 : 1sq, pr0 : 1s, r1 : 0sqq is the
subgroup preserving the rulings of QL

L. The only non-trivial symmetries in Sym3ˆZ{2
commuting with the ρpGalpk{kqq-action are the two reflections preserving E and the
rotation of order 2. By Remark 3.4, ηαη´1, ηβη´1 are involutions and they commute.
Moreover, they respectively fix and exchange ra2

1 : a1 : 1 : 0s, ra2
2 : a2 : 1 : 0s. Their

conjugates by the isomorphism RL ÝÑ QL from Lemma 3.3(2) respectively exchange
and preserve the rulings of QL

L. In particular, they induce the claimed action on the
hexagon of X, thus the sequence is split. �

Lemma 4.12. Let X be a rational del Pezzo surface of degree 6 such that ρpGalpk{kqq »
Z{2 ˆ Z{2 is generated by a reflection and a rotation of order 2 as in Figure 1(5). Then
there exist quadratic extensions L “ kpa1q and L1 “ kpb1q of k that are not k-isomorphic,
with

t2 ` at` ã “ pt´ a1qpt´ a2q, t2 ` bt` b̃ “ pt´ b1qpt´ b2q P krts
the minimal polynomials of a1, b1 such that the following hold:

(1) X » SL,L1 and there exists a birational contraction η : X ÝÑ QL » RL contracting
an irreducible curve onto the point tp1, p2u “ trb

2
1 : b1 : 0 : 1s, rb2

2 : b2 : 0 : 1su of
degree 2.

(2) X » tprw : x : y : zs, ru : vsq | vpw ` bx` b̃zq “ uyu Ă RL ˆ P1

(3) Two surfaces SL,L1 and S L̃,L̃1 are isomorphic if and only if L̃, L̃1 are respectively
k-isomorphic to L,L1.

(4) The action of AutkpXq on the hexagon of X induces a split exact sequence

1 ÝÑ TL,L
1

ÝÑ AutkpXq
ρ̂
ÝÑ xρ̂pαqy ˆ xρ̂pβqy ÝÑ 1



ALGEBRAIC SUBGROUPS OF THE PLANE CREMONA GROUP 25

where TL,L1 Ă AutkpRL, p1, p2q is the subgroup preserving the rulings of RL
L, and

ρ̂pαq is the reflection exchanging the singular fibres and ρ̂pβq is a rotation of order
2, where

ηαη´1 : rw : x : y : zs ÞÑ rw : x` ay : ´y : zs
ηβη´1 : rw : x : y : zs ÞÑ rw ` bp2x` bz ` ayq : ´px` bzq : ´y : zs

(5) rk NSpXqAutkpXq “ 2 and ηAutkpXqη
´1 “ AutkpRL, tp1, p2uq. In particular, X ÝÑ

˚ is not an AutkpXq-Mori fibre space.

Proof. (1) The hexagon of X contains a unique curve E whose geometric components are
disjoint. The contraction of E yields a birational morphism η : X ÝÑ Y to a del Pezzo
surface Y of degree 8, and the figure below shows the induced Galpk{kq-action on the
image of the hexagon, so Y » QL for some quadratic extension L{k by Lemma 3.2(1).

X
η

‚

‚

QL

We have ρpGalpk{kqq “ t1, r, s, rsu, where r is the rotation of order 2 and s is the reflection
preserving the components of E. Then s or sr is the image of the generator g of GalpL{kq.
It follows that the splitting field of p is a quadratic extension L1{k not k-isomorphic to
L such that the generator g1 of GalpL1{kq induces the rotation r on the hexagon. We set
L “ kpa1q and L1 “ kpb1q for some a1 P L, b1 P L

1. We can choose the form of p according
to Lemma 3.3(3a).

(2) follows from (1) and Lemma 3.3(3b).
(3) Consider the birational morphism η1 : S L̃,L̃1 ÝÑ RL̃ with exceptional curve E 1.

Suppose that we have S L̃,L̃1 » SL,L1 . Then E and E 1 are the unique curves in the hexagon
with only two components. Thus they are defined over the same splitting field over k,
and hence L1 » L̃1 over k. It follows that RL » RL̃, which implies that L » L̃ over k by
Lemma 3.2(3).

(4–5) The group kerpρ̂q » η kerpρ̂qη´1 Ă AutkpQL, p1, p2q is the subgroup preserving the
rulings of QL. Every element of AutkpXq preserves E because it is the only curve in the
hexagon with only two geometric components, so the elements of AutkpXq act by sym-
metries of order 2, and we have ηAutkpXqη

´1 “ AutkpQL, tp1, p2uq. The only symmetries
of the hexagon that commute with ρpGalpk{kqq are the two reflections preserving E and
the rotation of order 2. By Remark 3.4, ηαη´1, ηβη´1 are involutions and they commute.
Moreover, they respectively fix and exchange rb2

1 : b1 : 1 : 0s, rb2
2 : b2 : 1 : 0s. We see that

the conjugates of ηαη´1, ηβη´1 by the isomorphism RL 99K QL from Lemma 3.3(2) re-
spectively exchange and preserve the rulings of QL

L. In particular, they induce the claimed
action on the hexagon, thus the sequence is split. �

4.6. The fibration on a rational del Pezzo surface of degree 6 from Figures 1(2)
and 1(5). Let L{k, L1{k be two extensions of degree 2. We can obtain the Mori fibre
space π : SL,L1 ÝÑ P1 from Example 2.5(2) as follows: we first blow up the point p, then
contract the line passing through it, which yields a birational map P2 99K QL. Since p, p1
are not collinear, the image of p1 in QL is a proper point and blowing it up yields SL,L1 .
In particular, SL,L1 is one of the del Pezzo surfaces in Figure 1(2) and (5), which are
described in Lemma 4.11 and Lemma 4.12.
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Remark 4.13.

(1) Let L “ kpa1q and L1 “ kpb1q be two quadratic extensions of k, not necessarily
non-isomorphic over k, and let

t2 ` at` ã “ pt´ a1qpt´ a2q, t2 ` bt` b̃ “ pt´ b1qpt´ b2q P krts
be the minimal polynomials of a1 and b1 over k. Lemma 4.11(2) and Lemma 4.12(2)
imply that

SL,L1
» tprw : x : y : zs, ru : vsq P P3

ˆ P1
| wz “ x2

` axy ` ãy2, pw ` bx` b̃zqv “ uyu

and the fibration π : SL,L1 ÝÑ P1 is given by the projection
prw : x : y : zs, ru : vsq ÞÑ ru : vs “ rw ` bx` b̃z : ys.

(2) The group AutpSL,L1 , πq preserves a unique irreducible curve E in the hexagon of
X that has disjoint geometric components. It induces a morphism

AutpSL,L1 , πq ÝÑ Z{2,
and we denote by SOL,L1

Ă AutpSL,L1 , πq its kernel.
(3) Via the contraction η : X ÝÑ QL » RL of E onto a point tp1, p2u of degree 2, the

group SOL,L1 is conjugate to a subgroup of TL,L1 , the subgroup of AutpQL, p1, p2q

preserving the rulings of QL
L (see Lemma 4.11(3) and Lemma 4.12(4)).

(4) The image t, s P P1pLq of the singular fibres make up two points of degree 1 if
L,L1 are k-isomorphic, and one point of degree 2 if L,L1 are not k-isomorphic.

Lemma 4.14. Keep the notation of Remark 4.13 and let g be the generator of GalpL{kq.
Then the action of AutpSL,L1{πq on the geometric components of E induces the split exact
sequences

1 Ñ SOL,L1
ÝÑAutpSL,L1

{πq ÝÑ Z{2 Ñ 1

1 Ñ SOL,L1
pkq ÝÑAutkpSL,L1

{πq ÝÑ Z{2 Ñ 1
where Z{2 is generated by the image of the involution

prw : x : y : zs, ru : vsq ÞÑ prw ` bp2x` ay ` bzq : ´px` ay ` bzq : y : zs, ru : vsq,
and SOL,L1

» tpα, βq P TL,L
1

| αβ “ 1u, whose k-rational points are given by

(1) either SOL,L
pkq » tα P L˚ | ααg “ 1u,

(2) or SOL,L1
pkq » k˚ if L,L1 are not k-isomorphic.

Proof. The indicated map is the composition of the two commuting involutions α, β from
Lemma 4.11(3) and Lemma 4.12(4). In particular, it is an involution (it is not the iden-
tity by Remark 3.4) that induces a reflection on the hexagon exchanging the geometric
components of the singular fibres.

Let us compute the image of SOL,L1 in TL,L1 . Since this means computing the k-points
of these groups, it suffices to assume that L and L1 are k-isomorphic. We consider QL

as k-structure on P1
L ˆ P1

L. By Lemma 3.6(1), we can assume that p1 “ pr0 : 1s, r1 : 0sq,
p2 “ pr1 : 0s, r0 : 1sq. Then SOL,L is conjugate to a subgroup of the group of diagonal
maps AutpQL, p1, p2q. In these coordinates, the fibration π : SL,L ÝÑ P1 is mapped by
η to the pencil of curves given by cu1v1 ´ du0v0 “ 0, rc : ds P P1. A diagonal element
pα, βq P AutpQL, p1, p2q preserves each fibre if and only if αβ “ 1. It follows that SOL,L

“

tpα, βq P TL,L | αβ “ 1u.
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(1) The k-rational points SOL,L
pkq form the subgroup of elements in SOL,L1

pkq that
are fixed by the GalpL{kq-action, see Lemma 3.5. The generator g P GalpL{kq acts by
pα, βqg “ pβg, αgq, see Lemma 3.5. It follows that SOL,L

“ tpα, βq P TL,L | αβ “ 1u.
(2) Suppose that L,L1 are not k-isomorphic. LetK :“ LL1. Then GalpK{kq » GalpL{kqˆ

GalpL1{kq. Lemma 3.3(3a) tells us that we can assume that p1 “ prb1 : 1s, rb1 : 1sq, p2 “

prb2 : 1s, rb2 : 1sq. We now compute the form of the elements in SOL,L1
pKq: the element

γ :“
ˆˆ

b2 b1
1 1

˙

,

ˆ

b1 b2
1 1

˙˙

P PGL2pKq ˆ PGL2pKq.

induces a change of coordinates γ : QL
K ÝÑ QK

L sending pr0 : 1s, r1 : 0sq, pr1 : 0s, r0 : 1sq
onto p1, p2, respectively. Then SOL,L1

pKq Ă PGL2pKq
2 is the subgroup of elements of the

form

(AB) pA,Bq :“ γ˝pα, βq˝γ´1
“

ˆˆ

b2α ´ b1 b1b2p1´ αq
α ´ 1 b2 ´ αb1

˙

,

ˆ

b1β ´ b2 b1b2p1´ βq
β ´ 1 b1 ´ b2β

˙˙

.

The group SOL,L1
pkq is the GalpK{kq-invariant subgroup of SOL,L1

pKq. If g is the gener-
ator of GalpL{kq, and g1 is the one of GalpL1{gq, then

pA,Bqg “ pBg, Agq, pA,Bqg “ pAg
1

, Bg1
q

It follows that
SOL,L1

pkq “ tpA,Bq P PGL2pL
1
q
2
| pA,Bq of the form (AB), αβg “ 1 “ αβu

We obtain that β P k˚, and hence that SOL,L1
pkq » k˚. �

Lemma 4.15. Keep the notation of Remark 4.13 and let g be the generator of GalpL{kq.
Then the action of AutpSL,L1 , πq on P1 induces the exact sequences

1 Ñ AutpSL,L1
{πq ÝÑAutpSL,L1 , πq ÝÑ AutpP1, tt, suq » T1 ¸ Z{2 Ñ 1

1 Ñ AutkpSL,L1
{πq ÝÑAutkpSL,L1 , πq ÝÑ DL,L1

k ¸ Z{2 Ñ 1
where T1 is the 1-dimensional split torus, Z{2 is generated by the image of
prw : x : y : zs, ru : vsq ÞÑ prw ` bp2x` ay ` bzq : ´px` bzq : ´y : zs, ru` abv : ´vsq

and DL,L1

k Ď T1pkq is the subgroup
(1) DL,L

k “ tδ P T1pkq | δ “ λλg, λ P L˚u, where g is the generator of GalpL{kq,
(2) DL,L1

k » tλλgg
1

P F | λ P K,λλg
1

“ 1u if L and L1 are not k-isomorphic, where k Ă
F Ă LL1 is the intermediate extension such that GalpF {kq » xgg1y Ă GalpL{kq ˆ
GalpL1{kq, where g, g1 are the generators of GalpL{kq,GalpL1{kq, respectively.

Proof. The birational contraction η : SL,L1 ÝÑ QL induces a rational map π̂ : QL 99K P1

such that π̂ ˝ η “ π. We define
AutpQL, π̂q “ tα P AutpQL

q | Df P AutpP1
q such that π̂ ˝ α “ f ˝ π̂u

Then AutpQL, π̂q “ ηAutpSL,L1 , πqη´1. Let us compute AutkpQL
k , π̂q. For this, we can

assume that p1 “ pr0 : 1s, r1 : 0sq, p2 “ pr1 : 0s, r0 : 1sq (in the notation of Remark 4.13),
and the fibres of π̂ are of the form cu1v1 ´ du0v0 “ 0, rc : ds P P1. It follows that

AutkpP
1
k ˆ P1

kq Ě AutkpQ
L
k , π̂q “

!

pAλ, Bµq | λ, µ P k˚
)

¸ xτ : px, yq ÞÑ py, xqy

where

pIq Aλ “

ˆ

1 0
0 λ

˙

, Bµ “

ˆ

1 0
0 µ

˙

, or pIIq Aλ “

ˆ

0 1
λ 0

˙

, Bµ “

ˆ

0 1
µ 0

˙

.
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The automorphism pAλ, Bµq of type (I) induces the scaling rc : ds ÞÑ rc : λµds on P1,
the one of type (II) induces rc : ds ÞÑ rd : λµcs, and τ induces idP1 . Hence, the image of
AutpSL,L1 , πq in AutpP1, tt, suq is T1 ¸ Z{2Z.

Let us compute AutkpQL, π̂q, its image in AutkpP1, tt, suq separately for each of the two
cases L “ L1 and L,L1 not k-isomorphic. We will use that QL

K » P1
K ˆ P1

K for K “ LL1,
hence pAλ, Bµq P AutKpQL

K , π̂q exactly if λ, µ P K.
(1) Suppose that L “ L1. Then τ P AutkpQL, π̂q. An element pAλ, Bµq P AutLpQL, π̂q

is defined over k if and only λ, µ P L and Aλ “ Bg
µ, which is equivalent to µ “ λg.

In that case, λµ “ λλg, which is contained in k. Therefore, the image AutkpSL,L1 , πq in
AutkpP1, tt, suq is isomorphic to DL,L

k ¸ Z{2.
(2) Suppose that L and L1 are not k-isomorphic. Let K “ LL1 and GalpK{kq »

GalpL{kq ˆGalpL1{kq “ xgy ˆ xg1y. Let us compute AutKpQL
K , π̂q. Observe that we have

pi “ prbi : 1s, rbi : 1sq for i “ 1, 2 and that we can no longer assume that they are equal to
pr1 : 0s, r0 : 1sq, pr0 : 1s, r1 : 0sq. However, the coordinate change given by

γ :“
ˆˆ

b2 b1
1 1

˙

,

ˆ

b1 b2
1 1

˙˙

P PGL2pKq ˆ PGL2pKq

sends pr1 : 0s, r0 : 1sq, pr0 : 1s, r1 : 0sq onto p1, p2, respectively. One can compute that
the Galois action on QL (see the proof of Lemma 3.2) induced by γ, namely G1 “ γ´1 ˝

GalpK{kq ˝ γ, is given by

pru0 : u1s, rv0 : v1sq ÞÑ

#

prvg1 : vg0s, rug1 : ug0sq
prug

1

1 : ug
1

0 s, rv
g1

1 : vg
1

0 sq.

Note that τ is G1-invariant and so it remains to study which pAλ, Aµq are G1-invariant. So
pAλ, Aµq is defined over k for λ, µ P K if and only if

pAλ, Aµq “ pAλ, Aµq
g
“ pApµ´1qg , Apλ´1qgq

pAλ, Aµq “ pAλ, Aµq
g1
“ pApλ´1qg1 , Apµ´1qg1 q.

Hence, the elements of AutkpQL, π̂q are exactly those of the form γ ˝ pAλ, Aµq ˝ γ
´1 with

λ, µ P K satisfying λ “ pµ´1q
g, µ “ pλ´1q

g
λ “ pλ´1q

g1 , µ “ pµ´1q
g1 .

Instead of computing the image of AutkpQL, π̂q in AutkpP1q, we compute the image
of γ´1 AutkpQL, π̂qγ (i.e. pAλ, Aµq) on AutKpP1q with the induced Galois action on P1,
which is given by prc : dsqg “ rdg : cgs and prc : dsqg1 “ rdg1 : cg1s. Again, pAλ, Aµq induces
rc : ds ÞÑ rc : λµds or rc : ds ÞÑ rd : λµcs, and τ 1 induces idP1 . We compute the possible
δ “ λµ: On one hand we find

λµ “ pµ´1
q
g
pλ´1

q
g
“ pµg

1

q
g
pλg

1

q
g
“ pλµqgg

1

,

implying δ P F , where k Ă F Ă K with GalpF {kq “ xgg1y. On the other hand, we also
have

λµ “ λpµ´1
q
g1
“ λλg¨g

1

Hence, DL,L1

k is conjugated to tλλgg1 P F | λ P K, λλg1 “ 1u. �

In the lemma above, if L,L1 are not k-isomorphic, then DL,L1

k » tNF {kpλq | λ P

K, NK{Lpλq “ 1u, where NF {k and NK{L are the field norms of F {k andK{L, respectively.
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5. The conic fibration cases

In this section, we classify the rational conic fibrations π : X Ñ P1 that are AutpX, πq-
Mori fibre spaces. Recall that π induces a homomorphism AutpX, πq Ñ AutpP1q whose
kernel we denote by AutpX{πq and its k-points by AutkpX{πq.

Recall from Lemma 2.8 that, for any Mori fibre space π : X ÝÑ P1 such that X is
rational, we have either X » Fn for some n ě 0 or X » SL,L1 or X is isomorphic to a
del Pezzo surface obtained by blowing up P2 in a point of degree 4. In the latter case,
AutpX, πq is finite by Lemma 2.10, so we do not look at it.

5.1. Conic fibrations obtained by blowing up a Hirzebruch surface. We study
the rational conic fibrations π : X Ñ P1 that are AutpX, πq-Mori fibre spaces and for
which there is a birational morphism X ÝÑ Fn of conic fibrations for some n ě 0.

Remark 5.1. Let n ě 1 and denote by krz0, z1sn Ă krz0, z1s the vector space of homoge-
neous polynomials of degree n. In the coordinates from Example 2.5(1) the special section
S´n Ă Fn is given by y0 “ 0. We denote by Sn Ă Fn the section given by y1 “ 0. Since
Sn ¨ S´n “ 0, we have Sn „ S´n ` nf and S2

n “ n, where f is the class of a fibre. The
automorphism group of Fn is

AutpFnq “ AutpFn, πnq » Vn`1 ¸GL2 {µn, AutkpFnq » krz0, z1sn ¸GL2pkq{µnpkq,
where Vn`1 is the canonical k-structure on krz0, z1sn and µn “ tλ ¨ id P GL2 | λ

n “ 1u.
The group AutkpFnq acts on Fn by

ry0 : y1; z0 : z1s ÞÑ ry0 : P pz0, z1qy0 ` y1; az0 ` bz1 : cz0 ` dz1s,

and it has two orbits on Fn, namely S´n and FnzS´n.

Lemma 5.2. Let n ě 0 and η : X Ñ Fn be a birational morphism of conic fibrations that
is not an isomorphism, and suppose that AutkpX, πq contains an element permuting the
components of at least one singular geometric fibre. Let Gk Ă AutkpX{πq be the subgroup
of elements acting trivially on NSpXkq.

(1) If Gk is non-trivial, there exists N ě 1 and a birational morphism X Ñ FN
of conic fibrations blowing up r ě 1 points p1, . . . , pr contained in SN such that
řr
i“1 degppiq “ 2N .

(2) If Gk “ t1u, then AutkpX{πq » pZ{2qr for r P t0, 1, 2u.

Proof. The claim is proven in [5, Lemme 4.3.5] over C and its proof can be repeated
word by word over any algebraically closed field. Over a perfect field k it suffices to show
that curves contracted by the birational morphism ν : Xk ÝÑ pFNqk in (1) are already
defined over k. Since N ě 1, the surface Xk contains exactly two sections of negative
self-intersection, namely the strict transforms S̃´N and S̃N of S´N and SN , respectively,
and S̃2

´N “ S̃2
N “ ´N , and every singular geometric fibre has two components, each

intersecting either S̃´N or S̃N . We now show that S̃´N and S̃N are both defined over
k, which will then imply that the curves contracted by η are defined over k and we are
finished. The birational morphism η : X ÝÑ Fn contracts exactly one component in each
singular fibre. This implies that the strict transform S̃´n of S´n Ă Fn has self-intersection
ď ´n. If n ě 1, then S̃´n is one of S̃N or S̃´N and hence both S̃N or S̃´N are defined
over k. If n “ 0, then ηpS̃´Nq and ηpS̃Nq are sections in F0 of ruling induced by η. If they
are permuted by an element of Galpk{kq, each fibre contains two points blown-up by η,
which contradicts X ÝÑ P1 being a conic fibration. It follows that ηpS̃´Nq and ηpS̃Nq are
both defined over k and hence S̃´N , S̃N are defined over k as well. �
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Let us construct a special birational involution of Fn, n ě 1.
Example 5.3. Let n ě 1. Let p1, . . . , pr P Sn Ă Fn be points such that their geometric
components are in pairwise distinct geometric fibres and

řr
i“1 degppiq “ 2n, and assume

that πnppiq ‰ r0 : 1s, r1 : 0s for i “ 1, . . . , r. Let Pi P krz0, z1sdegppiq be the polynomial
defining πppiq P P1 and define P :“ P1 ¨ ¨ ¨Pr P krz0, z1s2n. Then the map

ϕ : Fn 99K Fn, py1, z1q Þ99K pP pz1q{y1, z1q

is an involution preserving the fibration, whose base-points are p1, . . . , pr, that exchanges
Sn and S´n and contracts the fibres through p1, . . . , pr.

We call µn Ă T1 the subgroup of nth roots of unity of the 1-dimensional standard torus
T1.
Lemma 5.4. Let n ě 1 and let η : X Ñ Fn be a birational morphism blowing up points
p1, . . . , pr P Sn whose geometric components are on pairwise distinct geometric fibres and
such that

řr
i“1 degppiq “ 2n. Then π :“ πnη : X ÝÑ P1 is a conic fibration that has

exactly two p´nq-sections and the following properties hold.
(1) There are split exact sequences

1 Ñ AutpX{πq ÝÑAutpX, πq ÝÑ AutpP1,∆q Ñ 1
1 Ñ AutkpX{πq ÝÑAutkpX, πq ÝÑ AutkpP1,∆q Ñ 1

where ∆ Ă P1 is the image of the singular fibres of X{P1.
(2) The action of AutpX{πq on the two p´nq-sections induces split exact sequences

1 Ñ H ÝÑAutpX{πq ÝÑ Z{2 Ñ 1,
1 Ñ Hpkq ÝÑAutkpX{πq ÝÑ Z{2 Ñ 1

where ηHη´1 “ AutpFn{πn, Snq » T1{µn and ηHpkqη´1 » k˚{µnpkq, and Z{2 “
xη´1ϕηy with ϕ : Fn 99K Fn the involution from Example 5.3.

(3) Any element of AutkpX{πqzHpkq is an involution fixing an irreducible double cover
of P1 branched over ∆ not intersecting S´n.

(4) π : X ÝÑ P1 is an AutpX, πq-Mori fibre space and an AutkpX, πq-Mori fibre space.
Proof. We denote by S̃n and S̃´n the strict transforms of the sections Sn and S´n of Fn in
X, which satisfy S̃2

n “ S̃2
´n “ ´n and which are the only (geometric) sections of negative

self-intersection. The anti-canonical divisor of X is π-ample because the geometric com-
ponents of the pi are on pairwise distinct geometric fibres, thus π : X ÝÑ P1 is a conic
fibration with r singular fibres, each of whose geometric components intersects exactly
one of the sections S̃n and S̃´n.

(1) For any element α P AutpP1,∆q there exists α̃ P AutpFnq preserving tp1, . . . , pru,
and we have η´1α̃η P AutpX, πq. The same argument holds for the k-points of these
groups.

(2) Up to an element of AutkpFnq, we can assume that πnppiq ‰ r1 : 0s, r0 : 1s for
i “ 1, . . . , r. Then the birational involution ϕ : Fn 99K Fn from Example 5.3 lifts to an
element of AutkpX{πq and exchanges S̃n and S̃´n. It follows that the action of AutpX{πq
on tS̃n, S̃´nu induces split exact sequences

1 Ñ H ÝÑ AutpX{πq ÝÑ Z{2 Ñ 1, and 1 Ñ Hpkq ÝÑ AutkpX{πq ÝÑ Z{2 Ñ 1.
Any element of H fixes S̃n and S̃´n pointwise, so ηHη´1 and ηHpkqη´1 are the subgroups
of AutpFn{πnq » Vn`1 ¸ T1{µn and AutkpFn{πnq » krz0, z1sn ¸ k˚{µnpkq, respectively,
fixing Sn pointwise. It follows that ηHη´1 “ T1{µn and ηHpkqη´1 “ k˚{µnpkq.
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(4) The fact that the element η´1ϕη P AutkpX{πq exchanges the components of every
singular geometric fibre implies that rk NSpXqAutkpX,πq “ 1. It follows that X{P1 is an
AutkpX, πq-Mori fibre space and in particular an AutpX, πq-Mori fibre space.

(3) For any λ P k˚ the map
pλ, ϕq : py1, z1q Þ99K pλ

nP pz1q{y1, z1q

is a birational involution of Fn and fixes the curve y2
1 ´ λnP pz0, z1qy

2
0 “ 0, which is a

double cover of P1 branched over ∆ and does not intersect the section S´n. �

Lemma 5.5. Let n ě 1 and η : X Ñ Fn be a birational morphism blowing up points
p1, . . . , pr P Sn whose geometric components are on pairwise distinct geometric fibres and
such that

řr
i“1 degppiq “ 2n. Let π “ πnη : X ÝÑ P1 be the induced conic fibration on X.

(1) If n “ 1, then X is a del Pezzo surface of degree 6 as in 1(1) or 1(3) and
AutpX, πq Ĺ AutpXq. Moreover, AutkpX, πq Ĺ AutkpXq if X is as in 1(1) and
AutkpX, πq “ AutkpXq if X is as in 1(3).

(2) If n ě 2, then AutpX, πq “ AutpXq.

Proof. (1) For n “ 1, the conic fibration X{P1 has two p´1q-sections and X is a del Pezzo
surface of degree 6 as in Figure 1(1) or Figure 1(3). Lemma 4.1(2) applied to Xk implies
that AutpXq contains an element inducing a rotation of order 6 on the hexagon ofX, which
is not contained in AutpX, πq. The same argument implies that AutkpX, πq Ĺ AutkpXq if
X is a del Pezzo surface of degree 6 as in 1(1). However, in the case of Figure 1(3), any
element of AutkpXq preserves the fibration by Lemma 4.9(4).

(2) If n ě 2, X contains exactly two p´nq-sections S̃n and S̃´n, which are the strict
transforms of Sn and S´n. Thus the class S̃n ` S̃´n in NSpXkq is AutkpXq-invariant,
hence KX ` pS̃n ` S̃´nq “ ´2f is AutkpXq-invariant as well. It follows that AutpXq “
AutpX, πq. �

If two conic fibrations as in Lemma 5.4 are isomorphic, they both have a birational
morphism to the same Hirzebruch surface Fn.

Lemma 5.6. For any fixed n ě 1, two conic fibrations as in Lemma 5.4 are isomorphic
if and only if the points on P1 are the same, up to an element of AutkpP1q.

Proof. Any element of AutkpP1q lifts to an element of AutkpFnq, so two such conic fibra-
tions are isomorphic, if and only if the points on the section Sn are the same, up to an
element of AutkpFnq. This means that their images on P1 are the same, up to an element
of AutkpP1q. �

5.2. Conic fibrations obtained by blowing up a del Pezzo surface. Let L “ kpa1q

and L1 “ kpb1q be quadratic extensions of k. In this section, we consider rational conic
fibrations π : X ÝÑ P1 for which there is a birational morphism η : X{P1 ÝÑ SL,L1{P1 of
conic fibrations, where πSL,L1 : SL,L1 ÝÑ P1 is the Mori fibre space from Example 2.5(2).
We have described the fibration SL,L1 ÝÑ P1 in Section 4.6.

Recall from Lemma 4.11(1) and Lemma 4.12(1) that there is a birational morphism
ν : SL,L1 ÝÑ QL contracting a curve E onto a point p1 of degree 2 with splitting field L1.

Remark 5.7. Let p P E Ă SL,L1 be a point whose geometric components are in distinct
smooth geometric fibres of SL,L1{P1. Any element of Galpk{kq exchanges or preserves the
geometric components of the point ηpEq and hence of the curve E, and this implies that
degppq is even and each geometric component of E contains degppq

2 geometric components
of p.
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We now show an analogue of Lemma 5.2, that we prove similarly to [5, Lemme 4.3.5].

Lemma 5.8. Let η : X ÝÑ SL,L1 be a birational morphism of conic fibrations that is
not an isomorphism, and suppose that AutkpX, πq contains an element exchanging the
components of at least one singular geometric fibre. Let Gk Ă AutkpX{πq be the subgroup
acting trivially on NSpXkq.

(1) If Gk is non-trivial, then η is the blow-up of r ě 1 points contained in E Ă SL,L1

whose geometric components are on pairwise distinct smooth geometric fibres, and
each geometric component of E contains half of the geometric components of each
point.

(2) If Gk “ t1u, then AutkpX{πq » pZ{2qr for r P t0, 1, 2u.

Proof. (1) Suppose that Gk is nontrivial. It preserves the geometric components of the
singular fibres, so η is Gk-equivariant and R :“ ηGkη

´1 Ă AutkpS
L,L1

k {πSL,L1 q. The group
R fixes the geometric components of E pointwise. Since R Ă PGL2pkpxqq and since it is
non-trivial, it fixes no other sections of SL,L1

k {P1. So, Gk fixes the geometric components
of the strict transform Ẽ Ă X of E and no other sections of Xk{P1

k. Moreover, AutkpX, πq
contains an element exchanging the components of at least one singular geometric fibre,
so it follows that each geometric component of Ẽ intersects exactly one component of
each geometric singular fibre. In particular, the points blown-up by η are contained in
E. The hypothesis that ´KX is π-ample implies that the geometric components of the
blown-up points are on distinct geometric components of smooth fibres. The remaining
claim follows from Remark 5.7.

(2) If Gk is trivial, then every non-trivial element of AutkpX{πq is an involution and
the claim follows from the fact that AutkpX{πq Ă PGL2pkpxqq. �

Example 5.9. Let us construct a special birational involution of ϕL,L1 of SL,L1 that
preserves the fibration SL,L1 ÝÑ P1 and induces the identity on P1.

Let E1, E2 be the geometric components of E. If g1 is the generator of GalpL1{kq,
then Eg

2 “ E1. Let p1, . . . , pr P E Ă SL,L1 be points whose geometric components are on
pairwise distinct smooth geometric fibres. We now construct an involution ϕ of SL,L1 whose
base-points are p1, . . . , pr and which exchanges E1 and E2. For i “ 1, 2, let Pi P Lrx, ys
be homogeneous polynomials defining the set of components of the p1, . . . , pr contained
in Ei. Consider a birational morphism SL,L1 ÝÑ QL that contracts E, and consider the
model of QL that is a k-structure on P1

L ˆ P1
L.

‚ If L and L1 are k-isomorphic, we can assume that the images of E1 and E2 are
respectively pr1 : 0s, r0 : 1sq and pr0 : 1s, r1 : 0sq, by Lemma 3.6(1). We define

ϕ̃L,L : pru0 : u1s, rv0 : v1sq ÞÑ

prv0P1pu0v0, u1v1q : v1P2pu0v0, u1v1qs, ru0P2pu0v0, u1v1q : u1P1pu0v0, u1v1qsq.

‚ If L and L1 are not k-isomorphic, we write L1 “ kpb1q. By Lemma 3.3(3a), we
can assume that the images of E1, E2 are prb1 : 1s, rb1 : 1sq, prb2 : 1s, rb2 : 1sq. To
compute ϕL,L1 , we simply conjugate ϕL,L over k with

γ :“
ˆˆ

b2 b1
1 1

˙

,

ˆ

b1 b2
1 1

˙˙

P PGL2pkq ˆ PGL2pkq

This yields the following form of ϕL,L1
ϕ̃L,L1 : pru0 : u1s, rv0 : v1sq ÞÑ prv0U ` v1V : v0W ´ v1U s, ru0U ` u1V : u0W ´ u1U sq
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where
U :“ b2P1pt, sq ´ b1P2pt, sq, V :“ b2

1P2pt, sq ´ b
2
2P1pt, sq, W :“ P1pt, sq ´ P2pt, sq

with
t :“ pu0 ´ b1u1qpv0 ´ b2v1q, s :“ pu0 ´ b2v1qpv0 ´ b1v1q.

In both cases, ϕ̃L,L1 commutes with GalpL{kq and GalpL1{kq and it is an involution.
Moreover, it preserves the image of the fibration SL,L1 ÝÑ P1 in QL and induces the
identity map on P1. The base-locus of ϕ̃L,L1 in QL is the image of E, and ϕ̃L,L1 contracts
the image of the fibres of SL,L1 ÝÑ P1 given by P1P2 “ 0. It follows that ϕ̃L,L1 lifts to a
birational involution ϕL,L1 not defined in p1, . . . , pr.

Lemma 5.10. Let η : X Ñ SL,L1 be the blow-up up of points p1, . . . , pr P E, r ě 1,
whose geometric components are on pairwise distinct smooth geometric fibres. Then π :“
πSη : X ÝÑ P1 is a conic fibration and degppiq is even and each geometric component of
E contains degppiq

2 geometric components for i “ 1, . . . , r. Moreover, the following hold.
(1) The action of AutpX, πq on P1 induces the exact sequence

1 Ñ AutpX{πq ÝÑAutpX, πq ÝÑ AutpP1,∆q Ñ 1

1 Ñ AutkpX{πq ÝÑAutkpX, πq ÝÑ pDL,L1

k ¸ Z{2q X AutkpP1,∆q Ñ 1

where DL,L1

k ¸ Z{2 is the image of AutkpSL,L1 , πq in AutkpP1q, see Lemma 4.15,
and ∆ Ă P1 is the image of the singular fibres of X.

(2) The AutpX{πq-action on the components of the strict transform of E induces the
split exact sequences

1 Ñ H ÝÑAutpX{πq ÝÑ Z{2 Ñ 1,
1 Ñ Hpkq ÝÑAutkpX{πq ÝÑ Z{2 Ñ 1

with ηHη´1 “ SOL,L1 from Lemma 4.14 and Z{2 is generated by the involution
ϕL,L1 : SL,L1 99K SL,L1 from Example 5.9.

(3) Any element of AutkpX{πqzHpkq is an involution fixing an irreducible double cover
of P1 branched over ∆.

(4) π : X ÝÑ P1 is an AutpX, πq-Mori fibre space and an AutkpX, πq-Mori fibre space.

Proof. The first claim follows from Remark 5.7 and the sequences in (1) are exact by
Lemma 4.14.

(2) Consider the involution ϕL,L1 : SL,L1 99K SL,L1 from Example 5.9 whose base-points
are p1, . . . , pr and that exchanges the geometric components of E. Then ϕ̂L,L1 :“ η´1ϕL,L1η
is contained in AutkpX{πq and exchanges the geometric components of the strict trans-
form Ẽ of E. In particular, the AutpX{πq-action on the set of geometric components of Ẽ
induces split exact sequences as claimed. The groups H and Hpkq are respectively conju-
gate by η to the subgroups of AutpSL,L1{πSq and AutkpSL,L1{πSq preserving the geometric
components of E, which are SOL,L1 and SOL,L1

pkq by Lemma 4.14.
(3) It is enough to show that this is already the case for any element in AutkpX{πqzHpkq.

Indeed, we have AutkpX{πq » Hpkq ¸ Z{2, and any element of AutkpX{πqzHpkq is of
the form pη´1αη, ϕ̂L,L1q, where α :“ pa, a´1q P SOL,L1

pkq. Using Example 5.9, we compute
that pη´1αη, ϕ̂L,L1q is an involution. Its fixed k-curve in QL

k is given by
au0v1P2pu0v0, u1v1q ´ u1v0P1pu0v0, u1v1q “ 0

which lifts to the desired curve on Xk.
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(4) The involution ϕ̂ exchanges the geometric components of all singular fibres and
hence X ÝÑ P1 is a AutpX,P1q-Mori fibre space and an AutkpX,P1q-Mori fibre space. �

Lemma 5.11. Let η : X Ñ SL,L1 be the blow-up up of points p1, . . . , pr P E, r ě 1, whose
geometric components are on pairwise distinct smooth geometric fibres. Then AutpX, πq “
AutpXq.

Proof. By Remark 5.7, each of the components of E contains half the geometric compo-
nents of each pi. It follows that n :“ 1

2
řr
i“1 degppiq P Z and n ě 1. For i “ 1, . . . , r, let Ei

be the exceptional divisor of pi and let f be a general fibre of X and Ẽ the strict transform
of E. We have KS “ ´2f ´ E and hence KX “ ´2f ´ π˚E ` E1 ` ¨ ¨ ¨ ` Er “ ´2f ´ Ẽ.
The curve Ẽ is the unique curve in X with self-intersection Ẽ2 “ ´2p1 ` nq ď ´4 and
hence it is AutpXq-invariant. In particular, KX` Ẽ “ ´2f is AutpXq-invariant. It follows
that AutpXq “ AutpX, πq. �

Lemma 5.12. Two conic fibrations as in Lemma 5.10 are isomorphic as conic fibrations
if and only if the points on P1 are the same, up to an element of DL,L1

k ¸ Z{2, which is
the image of AutkpSL,L1 , πq in AutkpP1q (see Lemma 4.15).

Proof. Let X ÝÑ SL,L1 and X 1 ÝÑ SL,L1 be such conic fibrations obtained by blowing up
p1, . . . , pr Ă E and p11, . . . , p1s Ă E, respectively, and suppose that they are isomorphic as
conic fibrations. Then this isomorphism sends the singular fibres of X onto the ones of
X 1, and hence descends to an automorphism of P1 that sends the images of the pi onto
the images of the p1i.

On the other hand, given an automorphism α of P1 contained in DL,L1

k ¸Z{2, we know
by Lemma 5.10 there exists an automorphism ψ of X that induces α on P1. If α sends the
pi onto the p1i, then either ψ or ψ ˝ϕ sends the pi onto the p1i, where ϕ is the generator of
Z{2 Ă AutkpX{πq in Lemma 5.10(2) exchanging the components of the singular fibres. �

6. The proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Lemma 6.1. Consider a birational morphism of conic fibrations X ÝÑ Fn for some
n ě 0, and suppose that X{P1 has at most two singular geometric fibres. If there is an
element of AutkpX, πq that permutes the components of at least one singular geometric
fibre, then it has exactly two singular geometric fibres and X is a del Pezzo surface of
degree 6.

Proof. Denote by η : X ÝÑ Fn the birational morphism. Let S̃´n Ă X be the strict
transform of the section S´n Ă Fn. Then S̃2

´n P t´n,´n´ 1,´n´ 2u. Let α P AutkpX, πq
be an element that permutes the components of at least one singular geometric fibre f0.
Then S̃ :“ αpS̃´nq is a section of η ˆ id : Xk ÝÑ P1

k of self-intersection S̃2 “ S̃2
´n, and

it intersects the other component of f0. It follows that S :“ ηpS̃q Ă Fn is a section of
self-intersection S2 P t´n` 2,´n` 1,´nu, depending on how many of the points blown
up by η are contained in S´n. Since S2 ě 0, we have n ď 2. If n “ 2, we have S2 “ 0 and
hence S „ S´2 ` f , which means that S ¨ S´2 “ ´1, which is impossible. It follows that
n “ 0 or n “ 1, and so X is a del Pezzo surface of degree 6 or 7. In the latter case, no
element of AutkpX, πq permutes the components of the singular fibre, hence X is a del
Pezzo surface of degree 6. �
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Lemma 6.2. Let π : X ÝÑ P1 be a AutpX, πq-Mori fibre space with at least three singular
geometric fibres and suppose that there is a birational morphism of conic fibrations X ÝÑ

Y , where Y “ Fn for some n ě 0 or Y “ SL,L1, and that AutkpX, πq is infinite. Then the
pair pX,AutpXqq is as in Theorem 1.1p6q.

Proof. The hypothesis that X is an AutpX, πq-Mori fibre space implies that AutkpX, πq
contains an element permuting the components of a singular geometric fibre. More-
over, X{P1 has at least three singular geometric fibres, the image of the homomorphism
AutkpX, πq ÝÑ AutkpP1q is finite and hence the kernel AutkpX{πq is infinite.

First, suppose that Y “ Fn. Since X{P1 has singular fibres, η is not an isomorphism.
Lemma 5.2 and the fact that AutkpX{πq is infinite imply that there exists N ě 1 and
a birational morphism X ÝÑ FN that blows up p1, . . . , pr P SN Ă FN whose geomet-
ric components are in distinct geometric fibres and such that

řr
i“1 degppiq “ 2N . Be-

cause π has at least three singular geometric fibres, Lemma 5.5(1) implies that N ě 2,
and now Lemma 5.5(2) implies that AutpX, πq “ AutpXq. Lemma 5.4(1–2) implies that
pX,AutpXqq is as in Theorem 1.1(6a).

Now, suppose that Y “ SL,L1 . Since X{P1 has at least three singular fibres, η is not
an isomorphism. Since AutkpX{πq is infinite, Lemma 5.8 implies that η blows up points
p1, . . . , pr P E whose geometric components are on distinct smooth geometric fibres, and
Remark 5.7 implies that they are all of even degree and each geometric component of E
contains half the geometric components of each pi. Lemma 5.11 implies that AutpX, πq “
AutpXq. Lemma 5.10 and the description of DL,L1

k in Lemma 4.15 imply that the pair
pX,AutpXqq is as in Theorem 1.1(6b). �

Proof of Theorem 1.1. By Proposition 2.13, there is aG-equivariant birational map P2 99K
X to a G-Mori fibre space π : X ÝÑ B that is one of the following:

‚ B is a point and X » P2 or X is a del Pezzo surface of degree 6 or 8,
‚ B “ P1 and there is a (perhaps non-equivariant) birational morphism of conic
fibrations X ÝÑ Y with Y “ Fn for some n ě 0 or Y “ SL,L1 .

By Lemma 2.14, it suffices to look at the case G “ AutpXq or G “ AutpX, πq, respectively.
The pair pP2,AutpP2qq is the one in Theorem 1.1(1).

IfX is a del Pezzo surface of degree 8, thenX is isomorphic to F0, to F1 or to QL for some
quadratic extension L{k by Lemma 3.2(1). However, F1 has a unique p´1q-curve, which is
hence AutpF1q-invariant and its contraction conjugates AutpF1q to a subgroup of AutpP2q.
It follows that X “ QL or X “ F0, i.e. the pair pX,AutpXqq is as in Theorem 1.1(2)–(3).

If X is a del Pezzo surface of degree 6, the Galpk{kq-action on the hexagon of X
is one of the actions in Figure 1(1)–(9). Lemma 4.1(2–3) applied to Xk yields that
rk NSpXkq

AutkpXkq “ 1 and that the action of AutkpXq on NSpXkq induces a split ex-
act sequence

1 ÝÑ pk˚q2 ÝÑ AutkpXq ÝÑ Sym3ˆZ{2 ÝÑ 1.
If the Galpk{kq-action is as in Figure 1(7)and (9), Lemma 4.6 and Lemma 4.7 imply

that the pair pX,AutkpXqq is as in Theorem 1.1(5a).
If the Galpk{kq-action is as in Figure 1(2)–3) and (5), then Lemma 4.11 and Lemma 4.9

and Lemma 4.12 imply that the pair pX,AutpXqq is as in Theorem 1.1(5c).
If the Galpk{kq-action is as in Figure 1(1), Lemma 4.1 implies that pX,AutpXqq is as

in Theorem 1.1(5(b)i).
If the Galpk{kq-action is as in Figure 1(4), Lemma 4.10 implies that pX,AutpXqq is as

in Theorem 1.1(5(b)ii).
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If the Galpk{kq-action is as in Figure 1(6), Lemma 4.2 implies that pX,AutpXqq is as
in Theorem 1.1(5(b)iii).

If the Galpk{kq-action is as in Figure 1(8), Lemma 4.3 implies that pX,AutpXqq is as
in Theorem 1.1(5(b)iv).

Suppose that X admits a conic fibration π : X ÝÑ P1 that is an AutpX, πq-Mori fibre
space and there is a birational morphism η : X ÝÑ Y where Y “ Fn for some n ě 0 or
Y “ SL,L1 .

First, suppose that η is an isomorphism. If X η
» Y “ Fn, recall that F0 and F1 have

already been discussed above, and that the family AutpFnq, n ě 2 is the family in Theo-
rem 1.1(4), see Remark 5.1. If X η

» Y “ SL,L1 , then AutpSL,L1 , πq Ď AutpSL,L1q, and the
pair pSL,L1 ,AutpSL,L1qq is as in Theorem 1.1(5c) by Lemma 4.11.

Now, suppose that η is not an isomorphism. Since π : X ÝÑ P1 is an AutpX, πq-Mori
fibre space, there is an element of AutkpX, πq that permutes the components of at least
one singular geometric fibre. If X{P1 has at most two singular fibres, then the fact that
η is not an isomorphism implies that Y “ Fn, and Lemma 6.1 implies that X is a del
Pezzo surface of degree 6. Then AutpX, πq Ď AutpXq and we have already discussed the
pair pX,AutpXqq above. If X{P1 has at least three singular fibres, recall that AutkpX, πq
is infinite by hypothesis, and now Lemma 6.2 implies that the pair pX,AutpXqq is as in
Theorem 1.1(6). �

7. Classifying maximal algebraic subgroups up to conjugacy

In this section we classify up to conjugacy and up to inclusion the maximal infinite
algebraic subgroups of BirkpP2q. For this, we first need to introduce the so-called Sarkisov
program. As before, k is a perfect field throughout the section.

7.1. The equivariant Sarkisov program. The Sarkisov program is an algorithmic way
to decompose birational maps between Mori fibre spaces into nice elementary birational
maps between Mori fibre spaces. In dimension 2, it is classical and treated exhaustively in
[19], and from a more modern point of view in [22]. In dimension 3, it is developed in [11]
over algebraically closed fields of characteristic zero. A non-algorithmic generalisation to
any dimension ě 2 is given in [18] over C.

For surfaces, the Sarkisov program over k is the Galpk{kq-equivariant classical Sarkisov
program over k. For an affine algebraic group G, we can consider two equivariant Sarkisov
programs:

‚ The Gpkq-equivariant Sarkisov program over k; the links are Gpkq-equivariant
birational maps between Gpkq-Mori fibre spaces. If G “ AutpXq is one of the
groups from Theorem 1.1, it is the tool to give us the conjugacy class of Gpkq
inside BirkpP2q.

‚ The G-equivariant Sarkisov program is the Gk ˆ Galpk{kq-equivariant Sarkisov
program over k; the links are G-equivariant birational maps between G-Mori fibre
spaces. If G “ AutpXq is one of the groups from Theorem 1.1, it is the tool to give
us the morphisms G ÝÑ BirkpP2q up to conjugation by an element of BirkpP2q.

As part of Theorem 1.2, we will prove that these two classifications are not the same if k
has an extension of degree 2 or 3.

Over C and for connected algebraic groups G, the G-equivariant Sarkisov program in
dimension ě 2 is developed in [17].
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Definition 7.1. Let G be an affine algebraic group. We now define Gpkq-equivariant Sark-
isov links. The notion of G-equivariant Sarkisov links is defined analogously by replacing
Gpkq with G, bearing that by G-orbit we mean a Gk ˆGalpk{kq-orbit.

AGpkq-equivariant Sarkisov link (or simplyGpkq-equivariant link) is aGpkq-equivariant
birational map ϕ : X 99K X 1 between Gpkq-Mori fibre spaces π : X ÝÑ B and π1 : X 1 ÝÑ

B1 that is one of the following:

X 1

X B1

B

type I

π1

π

ϕ

Y

X X 1

B “ B1

type II

η η1

π

ϕ

π1

X

X 1 B

B1

type III

πϕ

π1

X X 1

B B1

˚

type IV

ϕ
»

π π1

(type I) B is a point, B1 is a curve, ϕ´1 : X 1 ÝÑ X is the contraction of the Gpkq-orbit
of a curve in X 1 and πϕ´1 : X 1 ÝÑ B is a Gpkq-equivariant rank 2 fibration (see
Definition 2.11). We call ϕ a link of type I.

(type II) Either B “ B1 is a curve or a point, both η and η1 are contractions of the Gpkq-
orbit of a curve and πη : Y ÝÑ B is a Gpkq-equivariant rank 2 fibration. We call
ϕ a link of type II.

(type III) B is a curve, B1 is a point, ϕ is the contraction of the Gpkq-orbit of a curve and
π1ϕ : X ÝÑ B is a Gpkq-equivariant rank 2 fibration. We call ϕ a link of type III.
Its inverse is a link of type I.

(type IV) B1 and B1 are curves, ϕ is an Gpkq-equivariant isomorphism not preserving the
conic fibrations X{B and X 1{B1, and X{˚ is a Gpkq-equivariant rank 2 fibration.
We call ϕ a link of type IV.

For G “ t1u we recover the classical definition of a Sarkisov link over k.
The statement of Theorem 7.2 for G “ t1u is [19, Theorem 2.5]. Its proof can be made

Gpkq-equivariant and G-equivariant because for a geometrically rational variety X, the
Gk ˆGalpk{kq has finite action on NSpXkq and Gpkq has finite action on NSpXq.

Theorem 7.2 (Equivariant version of [19, Theorem 2.5]). Let G be an affine algebraic
group. Any Gpkq-equivariant birational map between two geometrically rational surfaces
that are Gpkq-Mori fibre spaces is the composition of Gpkq-equivariant Sarkisov links and
isomorphisms.

The same statement holds if we replace Gpkq by G.

To study conjugacy classes of the automorphism groups of the surfaces in Theorem 1.1,
it therefore suffices to study equivariant Sarkisov links between them.

Remark 7.3. Definition 7.1 implies the following properties. Let φ : X{B 99K X 1{B1 be
an equivariant link.

(1) If φ is a link of type I, then B is a point, X{B is an equivariant rank 1 fibration
above a point and X 1{B is an equivariant rank 2 fibration above a point. Equi-
variant rank s fibrations above a point are in particular (non-equivariant) rank r
fibrations above a point for some r ě s, see Definition 2.11, and so they are del
Pezzo surfaces, see Definition 2.4. So both X and X 1 are del Pezzo surfaces. By
symmetry, the same holds for a link of type III.
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(2) If φ is a link of type II and B “ B1 a point, then X{B and X 1{B are equivariant
rank 1 fibrations above a point, and Y {B is an equivariant rank 2 fibration above
a point. Again, in particular, X,X 1 and Y are all del Pezzo surfaces.

Many of the surfaces in Theorem 1.1 are equivariant Mori fibre spaces with respect
to their automorphism group, as well as to the group of k-points of their automorphism
group, and the restrictions for the possible AutkpXq-links are also restrictions on the
possibilities of AutpXq-links.

We now classify the AutkpXq-equivariant links starting from a surface X from Theo-
rem 1.1 in the order (1–3), (5a), (5(b)ii–5(b)iv), (5(b)i), (4) and (6).

7.2. AutkpXq-equivariant links of del Pezzo surfaces of degree 8 and 9. We show
that there are no AutkpXq-equivariant links starting from a AutkpXq-Mori fibre space X
that is a rational del Pezzo surface of degree 8 or 9.
Lemma 7.4. (1) AutkpP2q does not have any orbits in P2 with d P t1, . . . , 8u geomet-

ric components that are in general position.
(2) For X “ F0 and X “ QL, AutkpXq does not have any orbits in X with d P

t1, . . . , 7u geometric components that are in general position.
Proof. (1) Lemma 2.6 implies the claim for 1 ď d ď 4. If k is infinite and if AutkpP2q had
an orbit with 5 ď d ď 8 geometric components, then αd! “ id for any α P AutkpP2q, which
is false. Suppose that k is finite and let q :“ |k| ě 2. Let p “ tp1, . . . , peu be a point in P2

of degree e ě 5 and L{k be the smallest field extension such that p1, . . . , pe P P2pLq. We
view AutkpP2q as an abstract subgroup of AutLpP2q, which gives us

1 “ | Xei“1 StabAutkpP2qppiq| “ |StabAutkpP2qpp1q| “
|AutkpP2q|

|AutkpP2q-orbit of p1 in P2pLq|
.

Moreover, we have |AutkpP2q| “ q3pq3´1qpq2´1q ą q3 ě 8, and hence the AutkpP2q-orbit
of p in P2 has ě 9 geometric components.

(2) For X “ F0 and d “ 1, 2, the claim follows from Remark 2.7. For X “ QL, the claim
follows from Remark 2.7 for d “ 1, from Lemma 3.6 for d “ 2. Let L{k be a quadratic
extension such that QL

L » P1
LˆP1

L, and by Lemma 3.5 we have AutkpQLq » PGL2pLq¸Z{2.
For 3 ď d ď 7, we can repeat the argument of (1) for F0 and QL by using that for a finite
field k with q :“ |k| ě 2 we have

|AutkpF0q| “ 2|PGL2pkq|2 “ 2q2
pq2
´ 1q2 ą 8

|AutkpQL
q| “ 2|PGL2pLq| “ 2q2

pq4
´ 1q ą 8.

�

Lemma 7.5. There is no AutkpXq-equivariant link starting from X “ P2, X “ QL or
X “ F0.
Proof. Since rk NSpXqAutkpXq “ 1, the only AutkpXq-equivariant links starting from X
are of type I or II. Moreover, AutkpF0q-equivariant links starting from F0 can be treated
like the ones starting from QL because NSpF0q

AutkpF0q “ Zpf1 ` f2q “ NSpQLq, where
f1, f2 are the fibres of the two projections of F0.

By Remark 7.3, an AutkpP2q-equivariant link of type I or II starting from P2 blows up an
orbit with ď 8 geometric components that are in general position, and by Lemma 7.4(1),
there is no such orbit. An AutkpXq-equivariant link of type I or II starting from X “ QL

or X “ F0 blows up an orbit with ď 7 geometric components that are in general position,
and by Lemma 7.4(2), there is no such orbit. �
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7.3. AutkpXq-equivariant links of del Pezzo surfaces of degree 6 (5a). These del
Pezzo surfaces are Mori fibre spaces. We will show that there are no AutkpXq-equivariant
links starting from X.

Recall from Lemma 4.6 and Lemma 4.7 that there is a quadratic extension L{k such
that XL is obtained by blowing up a point p “ tp1, p2, p3u in P2 of degree 3. We denote
by π : XL ÝÑ P2

L the blow-up of p. Recall that πGalpL{kqπ´1 acts rationally on P2; its
generator ψg is not defined at p and sends a general line onto a conic through p. Recall
that if X is rational, it has a rational point by Proposition 2.9.

Lemma 7.6. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5a) and fix
s P Xpkq. The map

AutLpP2, p1, p2, p3q
xψgy ÝÑ Xpkq, α ÞÑ π´1

pαpπpsqq “ pπ´1απqpsq

is bijective.

Proof. The map is injective, because these automorphisms already fix p1, p2, p3. For any
t P Xpkq, we have πptq P P2

LpLq, and by Lemma 2.6 there exists a unique element of
αt P AutLpP2, p1, p2, p3q such that αtpπpsqq “ t. Then π´1αtπ P AutLpXq and its conjugate
by the generator of GalpL{kq is still contained in AutLpXq and preserves each edge of
the hexagon, hence ψgαtψgα´1

t P AutLpP2, p1, p2, p3q. The automorphism ψgαtψgα
´1
t fixes

p1, p2, p3, πptq, so it is the identity, and therefore αt P AutLpP2, p1, p2, p3q
xψgy. �

Lemma 7.7. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5a). Then
|Xpkq| ě 7 if |k| ě 3 and |Xpkq| “ 3 if |k| “ 2. Moreover, in the latter case the blow-up
of Xpkq is a del Pezzo surface.

Proof. If k is infinite, then P2pkq is dense in P2pkq, and hence Xpkq is infinite. If k is
finite, pick a rational point r P Xpkq. There exists a link of type II φ : X 99K QL that is
not defined at r and contracts a curve with three geometric components passing through
r, see Figure 2. If Z ÝÑ X is the blow-up of r and L{k a quadratic extension such that
QL “ P1

L ˆ P1
L, we have

q2
` 1 “ |P1

pLq| “ |QL
pkq| “ |Zpkq| “ |Xpkq| ´ 1` |P1

pkq| “ |Xpkq| ` q
because the exceptional divisor of r is isomorphic to P1

k. It follows that |Xpkq| “ q2´q`1 “
qpq ´ 1q ` 1.

Suppose now that |k| “ 2 and so |Xpkq| “ 3. Then Xpkq is the image of the five points
QLpkq by φ, and it suffices to show that the blow-up of QLpkq is a del Pezzo surface. We
write L “ kpaq, where a2 ` a` 1 “ 0. The set QLpkq consists of

pr1 : 0s, r1 : 0sq, pr0 : 1s, r0 : 1sq, pr1 : 1s, r1 : 1sq, pr1 : as, r1 : a2
sq, pr1 : a2

s, r1 : asq
and we check that they are not contained in any fibre of QL

L nor in any bidegree p1, 1q-
curve. This yields the claim. �

Lemma 7.8. Let X be a rational del Pezzo surface as in Theorem 1.1(5a).
(1) If |k| ě 3, then X does not contain any AutkpXq-orbits with ď 5 geometric com-

ponents.
(2) If |k| “ 2, there is exactly one AutkpXq-orbit of X with ď 5 geometric components,

namely Xpkq.

Proof. Since Galpk{kq acts transitively on the edges of the hexagon, any orbit with ď 5
geometric components is outside of it. Let D Ă P2

L be the image of the hexagon by π.
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Suppose that |k| ě 3. By Lemma 7.7, we have |Xpkq| ě 7, so Lemma 7.6 implies
that the group AutLpP2, p1, p2, p3q

xψgy has ě 7 elements. It acts faithfully on P2zD, hence
any AutLpP2, p1, p2, p3q

xψgy-orbit in P2zD has ě 7 geometric components. It follows that
AutkpXq has no orbits with ď 5 geometric components on X.

Suppose now that |k| “ 2 and let L{k be the extension of degree 2. We show that
πAutkpXqπ

´1-orbit of any point in P2
LzD has either 3 or ě 6 elements, and that πpXpkqq

is the only orbit with 3 elements. Let ϕp P BirLpP2q be the quadratic involution from
Lemma 4.6(4) and Lemma 4.7(4) that lifts to an automorphism ϕ̃p “ π´1ϕpπ on X
over k inducing a rotation of order 2 on the hexagon of X. By Lemma 4.6(4) (resp.
Lemma 4.7(4)) the group

AutLpP2, p1, p2, p3q
xψgy ¸ xϕpy

is isomorphic to a subgroup of AutkpXq. Lemma 7.7 and Lemma 7.6 imply that AutLpP2, p1, p2, p3q
xψgy

has 3 elements, and it acts faithfully on P2
LzD. Over k, the involution ϕp is conjugate to

the involution rx : y : zs 99K ryz : xz : xys, which has a unique fixed point in P2
k, namely

r1 : 1 : 1s, because |k| “ 2. Thus ϕp has a unique fixed point r P P2
L. Then r̃ :“ π´1prq

is the unique fixed point of ϕ̃p on X, and it is k-rational. We have shown that every
AutkpXq-orbit in XpLqzXpkq has ě 6 elements. The set Xpkq is an AutkpXq-orbit with
3 elements. �

Lemma 7.9. Let |k| “ 2 and let X be a del Pezzo surface from Theorem 1.1(5(a)i). Any
AutkpXq-invariant link ϕ : X 99K Y is a link of type II not defined at Xpkq, and Y is a
del Pezzo surface as in Theorem 1.1(5(b)ii).

Proof. We haveXpkq “ tr1, r2, r3u, see Lemma 7.7, which is an AutkpXq-orbit by Lemma 7.8.
For a point s P S :“ tπpr1q, πpr2q, πpr3q, p1, p2, p3u Ă P2

L, we denote by Cs the strict trans-
form of the conic in P2

L passing through the five points in Sztsu, and let Lrirj be the strict
transform of the line in P2

L through πpriq, πprjq, i ‰ j. The curves
Cp :“ Cp1 Y Cp2 Y Cp3 , D1 :“ Cr1 Y Lr2r3 , D2 :“ Cr2 Y Lr1r3 , D3 :“ Cr3 Y Lr1r2

and Li :“ Lrip1YLrip2YLrip3 , i “ 1, 2, 3, are irreducible over k. The curve Cp is AutkpXq-
invariant, while D1, D2, D3 and L1, L2, L3 make up an AutkpXq-orbit, see Lemma 4.6(4)
for the generators of AutkpXq.

Let η : Z ÝÑ X be the blow-up of Xpkq, which is AutkpXq-equivariant by Lemma 7.8.
The surface Z is a del Pezzo surface of degree 3 by Lemma 7.7. There is at most one way to
complete η into an AutkpXq-equivariant link, because Z is an AutkpXq-equivariant rank
2 fibration, and hence there are at most two extremal AutkpXq-equivariant contractions
from Z. However, any conic fibration Z ÝÑ P1 is given by the fibres of the strict transforms
of conics through four fixed points in S or the strict transform of lines through one point
in P2

L, but none of them are AutkpXq-equivariant. So the link ϕ has to be of type II.
The only AutkpXq ˆGalpk{kq-orbits of p´1q-curves on Zk with ď 6 geometric compo-

nents which are pairwise disjoint are the exceptional divisors of η and the strict transform
of Cp. The contraction η1 : Z ÝÑ Y of the latter induces an AutkpXq-equivariant link
X 99K Y to a del Pezzo surface Y of degree 6.

Since the strict transforms of Cpi and Crj on Zk are disjoint for i, j “ 1, 2, 3, the
hexagon of Y consists in the curve η1pD1q Y η1pD2q Y η1pD3q. Each component η1pDiq of
this union is k-rational, so Galpk{kq acts as rotation of order 2 on the hexagon of Y , i.e.
as in Figure 1(4). By Lemma 4.10, Y is described in Theorem 1.1(5(b)ii). �
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Proposition 7.10. Let X be a del Pezzo surface from Theorem 1.1(5a). Then, if |k| ě 3,
there are no AutkpXq-equivariant links starting from X. If |k| “ 2, the only AutkpXq-
equivariant link is the one from Lemma 7.9.

Proof. Since rk NSpXq “ 1, only AutkpXq-equivariant links of type I or II can start from
X. By Remark 7.3, they are not defined at an orbit with ď 5 geometric components. By
Lemma 7.8, such an orbit only exists for surfaces X as in Theorem 1.1(5a) if |k| “ 2. The
claim now follows from Lemma 7.9. �

7.4. AutkpXq-equivariant links of del Pezzo surfaces of degree 6 (5(b)ii)–(5(b)iv).
Any del Pezzo surface X of degree 6 from Theorem 1.1(5(b)ii)–(5(b)iv) is a AutkpXq-Mori
fibre space, and we show that there are no AutkpXq-equivariant links starting from X.

Lemma 7.11. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5(b)ii). Then
any AutkpXq-orbit on X has at least 6 geometric components.

Proof. Let π : X ÝÑ F0 be the contraction of a curve in the hexagon onto the point
p “ tpp1, p1q, pp2, p2qu of degree 2 with pi “ rai : 1s, i “ 1, 2. Since AutkpXq acts by
Sym3ˆZ{2 on the hexagon of X, any orbit with ď 5 geometric components is outside of
the hexagon. Let D Ă F0 be the image by π of the hexagon, which contains p, and consider
the action of πAutkpXqπ

´1 on F0zD. The elements of AutkpP1, p1, p2q are exactly those
of the form

ru : vs ÞÑ rpbpa1 ` a2q ` cqu´ ba1a2v : bu` cvs, rb : cs P P1
pkq

and thus
|AutkpP1, p1, p2q|

2
“ |P1

pkq|2 ě 32
“ 9.

Any non-trivial element of AutkpP1, p1, p2q has precisely two fixed points in P1. It follows
that the stabiliser in AutkpP1, p1, p2q

2 of any point p3 P pF0qkzDk is trivial and hence
|AutkpP1, p1, p2q

2-orbit of p3 in pF0zDqk| “ |AutkpP1, p1, p2q
2
| ě 9.

We have shown that AutkpP1, p1, p2q
2 has no orbits on F0zD with ď 5 geometric compo-

nents, and hence that πAutkpXqπ
´1 has not orbits on F0zD with ď 5 geometric compo-

nents. �

Remark 7.12. Let p “ tp1, p2, p3u be a point of degree 3 in P2. Fix a point r P P2pkq. In
particular, the point r is not collinear with any two components of p, and so Lemma 2.6
implies that the map AutkpP2, p1, p2, p3q ÝÑ P2pkq, α ÞÑ αprq is a bijection.

Lemma 7.13. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5(b)iii). Then
any AutkpXq-orbit on X has ě 6 geometric components.

Proof. Since AutkpXq contains an element inducing a rotation of order 6 on the hexagon
of X, the hexagon does not contain AutkpXq-orbits with ď 5 geometric components.
Consider the contraction π : X ÝÑ P2 of a curve in the hexagon of X onto the point
p “ tp1, p2, p3u of degree 3, let D Ă P2 be the image of the hexagon and consider
the action of AutkpP2, p1, p2, p3q Ă πAutkpXqπ

´1 on P2zD. Remark 7.12 implies that
|AutkpP2, p1, p2, p3q| “ |P2pkq| ě 7. The stabiliser of AutkpP2, p1, p2, p3q of any point in
pP2zDqk is trivial, so in particular all the AutkpP2, p1, p2, p3q-orbits in P2zD have ě 7
geometric components. It follows that πAutkpXqπ

´1 has no orbits in P2zD with ď 5
geometric components. �

Lemma 7.14. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5(b)iv). The
blow-up of X in any finite AutkpXq-orbit is not a del Pezzo surface.
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Proof. Let π : X ÝÑ P2 be the contraction of a curve C in the hexagon ofX onto the point
p “ tp1, p2, p3u of degree 3. By hypothesis, the splitting field L{k of p satisfies GalpL{kq »
Sym3, so k is not finite [27, Theorem 6.5]. Remark 7.12 implies that AutkpP2, p1, p2, p3q

is infinite. Let D Ă P2 be the image by π of the hexagon and consider the action of
AutkpP2, p1, p2, p3q Ă πAutkpXqπ

´1 on P2zD. The stabiliser of AutkpP2, p1, p2, p3q of any
point in pP2zDqk is trivial, and hence any AutkpP2, p1, p2, p3q-orbit on P2zD has infinitely
many geometric components. It follows that any AutkpXq-orbit with finitely many geo-
metric components is contained in the hexagon of X, and so its blow-up is not a del Pezzo
surface. �

Proposition 7.15. There is no AutkpXq-equivariant link starting from a del Pezzo sur-
face X of degree 6 as in Theorem 1.1p5pbqiiq ´ p5pbqivq.

Proof. Since rk NSpXqAutkpXq “ 1, the only AutkpXq-equivariant links starting from X
are of type I or II, and by Remark 7.3, they are not defined in an AutkpXq-orbit with
ď 5 geometric components and its blow-up is a del Pezzo surface. If X is as in Theo-
rem 1.1(5(b)ii)–(5(b)iii) no such orbit exists respectively by Lemma 7.11 and Lemma 7.13.
If X is as in Theorem 1.1(5(b)iv), then the blow-up of any such orbit is not a del Pezzo
surface by Lemma 7.14. �

7.5. AutkpXq-equivariant links of del Pezzo surfaces of degree 6 (5(b)i). Studying
AutkpXq-equivariant links for such a del Pezzo surface is a bit more involved. We will show
that there are equivariant links starting from X only if |k| “ 2 and provide examples.
Recall Lemma 4.1 for a description of X.

Lemma 7.16. Fix homogeneous coordinates in P2 and consider the subgroup H Ă PGL3pkq
of permutation matrices. If the H-orbit O of a point in txyz ‰ 0u Ă P2 has ď 5 geometric
components, it is one of the following:

(1) O “ tr1 : 1 : 1su,
(2) O “ tr1 : a : a2s, r1 : a2 : asu with a3 “ 1,
(3) O “ tr1 : a : as, ra : a : 1s, ra : 1 : asu for some a P k˚.

Proof. The H-orbit Ok of a point p :“ r1 : a : bs P txyz ‰ 0uk is contained in the set
tr1 : a : bs, r1 : b : as, ra : b : 1s, rb : a : 1s, ra : 1 : bs, rb : 1 : asu
“tr1 : a : bs, r1 : b : as, r1 : a´1b : a´1s, r1 : ab´1 : b´1s, r1 : a´1 : a´1bs, r1 : b´1 : ab´1su

If p is an H-fixed point, we have Ok “ O “ tr1 : 1 : 1su. We check that if |Ok| “ 2, then
we have Ok “ tr1 : a : a2s, r1 : a2 : asu with a3 “ 1. If |Ok| “ 3, then Ok “ tr1 : 1 : cs, r1 :
c : 1s, r1 : c´1 : c´1su for some c P k˚. We also check that 4 ď |Ok| ď 5 is not possible. �

Lemma 7.17. Let X be the del Pezzo surface of degree 6 from Theorem 1.1(5(b)i).
(1) If |k| ě 4, then X contains no AutkpXq-orbits with ď 5 geometric components.
(2) If |k| “ 3, then AutkpXq has exactly one orbit on X with ď 5 geometric compo-

nents, namely the orbit tpr1 : ˘1 : ¯1s, r1 : ˘1 : ¯1squ with 4 elements. Its blow-up
is not a del Pezzo surface.

(3) If |k| “ 2, then AutkpXq has exactly two orbits on X with ď 5 geometric compo-
nents, namely the fixed point pr1 : 1 : 1s, r1 : 1 : 1sq and the point tpr1 : ζ : ζ2s, r1 : ζ2 : ζsq,
pr1 : ζ2 : ζs, r1 : ζ : ζ2squ of degree 2, where ζ R k, ζ3 “ 1.

Proof. By Lemma 4.1(2), the group AutkpXq acts transitively on the edges of the hexagon,
so the hexagon does not contain AutkpXq-orbits with ď 5 geometric components. We pick
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three disjoint edges of the hexagon and consider their contraction π : X ÝÑ P2 onto the
coordinate points, which maps the hexagon onto the curve txyz “ 0u. It remains to
study the πAutkpXqπ

´1-action on txyz ‰ 0u. The stabiliser subgroup of the subgroup
pk˚q2 Ă πAutkpXqπ

´1 of diagonal elements of any point in txyz ‰ 0u is trivial. It follows
that the pk˚q2-orbit of any point in P2 has ě 9 geometric components if |k˚| ě 3, proving
(1).

Let 2 ď |k| ď 3 and recall from Lemma 4.1(2) that πAutkpXqπ
´1 » pk˚q2¸pHˆZ{2q,

where H “ π Sym3 π
´1 is the group of permutation matrices in AutkpP2q and Z{2 is

generated by the involution px, yq Þ99K p 1
x
, 1
y
q.

If a πAutkpXqπ
´1-orbit in txyz ‰ 0u has ď 5 geometric components, then this holds

in particular for an H-orbit O, which is one of the following by Lemma 7.16
(i) O “ tr1 : 1 : 1su,
(ii) O “ tr1 : a : a2s, r1 : a2 : asu with a3 “ 1,
(iii) O “ tr1 : a : as, r1 : 1 : a´1s, r1 : a´1 : 1su for some a P k˚.
(3) If |k| “ 2, then πAutkpXqπ

´1 » pH ˆZ{2q and the point r1 : 1 : 1s is a fixed point
and is equal to (iii) and (ii) for a “ 1. If a R k and a3 “ 1, the point tr1 : a : a2s, r1 : a2 : asu
of degree 2 is a πAutkpXqπ

´1-fixed point.
(2) If |k| “ 3, then the πAutkpXqπ

´1-orbit of r1 : 1 : 1s is the set O “ tr1 : ˘1 : ˘1su,
which has 4 elements. The πAutkpXqπ

´1-orbit of a point in (ii) or (iii) is either the
orbit of r1 : 1 : 1s or has ě 6 geometric components. The line ty “ zu Ă P2 contains
r1 : 0 : 0s, r1 : ´1 : ´1s, r1 : 1 : 1s, so the blow-up of X in π´1pOq is not a del Pezzo
surface. �

Lemma 7.18. Let |k| “ 2 and let X be the del Pezzo surface of degree 6 from Theo-
rem 1.1(5(b)i). The blow-up of X in any AutkpXq-orbit with ď 5 geometric components
does not admit a AutkpXq-equivariant fibration over P1.
Proof. Let π : X ÝÑ P2 be the blow-up of the coordinate points p1, p2, p3. By Lemma 7.17(3),
the only AutkpXq-orbits on X with ď 5 geometric components are a fixed-point r P Xpkq
and a point q P X of degree 2, both not on the hexagon.

Let Y ÝÑ X be the blow-up of r and let Y {P1 be a conic fibration. Its fibres are
either the strict transform of the lines through one of p1, p2, p3, r, or the strict transform
of the conics through p1, p2, p3, r. Since AutkpXq » Sym3ˆZ{2 acts transitively on the
edges of the hexagon of X by Lemma 4.1 and the quadratic involution in πAutkpXqπ

´1

sends a general line through r onto a conic through p1, p2, p3, r, it follows that Y {P1 is
not AutkpXq-equivariant.

Let Y ÝÑ X be the blow-up of q and Y {P1 a conic fibration. Its fibres are the strict
transforms of the conics through q and two of p1, p2, p3 or of a line through one of p1, p2, p3.
Again, as AutkpXq acts transitively on the edges of the hexagon of X, it follows that Y {P1

is not AutkpXq-equivariant. �

Example 7.19. Let π : X ÝÑ P2 be the blow-up of the coordinate points p1, p2, p3 of P2.
If |k| “ 2, then by Lemma 4.1(2) the group πAutkpXqπ

´1 » Sym3ˆZ{2 is generated by

α : rx : y : zs ÞÑ rx : z : ys, β : rx : y : zs ÞÑ rz : y : xs, σ : px, yq Þ99K p1
x
,

1
y
q

(1) If charpkq “ 2, the birational map ψ1 : P2 99K F0

ψ1 : rx : y : zs Þ99K prx´ z : y ´ zs, rypx´ zq : xpy ´ zqsq,
ψ´1

1 : pru0 : u1s, rv0 : v1sq Þ99K ru0pu0 ` u1qv1 : u1pu0 ` u1qv0 : u0u1pv0 ` v1qs
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is not defined at p1, p2, p3, r1 : 1 : 1s and contracts the πAutkpXqπ
´1-orbit tpy ´

zqpx´ zqpx´ yq “ 0u. If |k| “ 2, it lifts to an AutkpXq-birational map
ϕ1 :“ ψ1π : X 99K F0

not defined at π´1pr1 : 1 : 1sq, because
ψ1αψ

´1
1 : pru0 : u1s, rv0 : v1sq ÞÑ pru0 ` u1 : u1s, rv0 ` v1 : v1sq,

ψ1βψ
´1
1 : pru0 : u1s, rv0 : v1sq ÞÑ pru0 : u0 ` u1s, rv0 : v0 ` v1sq,

ψ1σψ
´1
1 : pru0 : u1s, rv0 : v1sq ÞÑ prv0 : v1s, ru0 : u1sq

are automorphisms of F0. So ϕ1 : X 99K F0 is an AutkpXq-equivariant link of type
II.

(2) Let charpkq “ 2 and ζ P kzk, ζ3 “ 1 and q :“ tr1 : ζ : ζ2s, r1 : ζ2 : ζsu. The
birational map ψ2 : P2 99K F0

ψ2 : rx : y : zs Þ99K prxy ` xz ` yz : ypx` y ` zqs, rxy ` xz ` yz : zpx` y ` zqs,
ψ´1

2 : pru0 : u1s, rv0 : v1sq Þ99K ru0v0pu1v0 ` u0v1 ` u1v1q : u1v0pu1v0 ` u0v1 ` u0v0q :
u0v1pu1v0 ` u0v1 ` u0v0qs

is not defined at p1, p2, p3, q and contracts the rational curves tpx ` y ` zqpxy `
xz ` yzq “ 0u, and the conic ty2 ` yz ` z2 “ 0u onto q1 :“ tpr1 : ζs, r1 : ζ2sq, pr1 :
ζ2s, r1 : ζsqu. Let η : X 1 ÝÑ F0 be the blow-up of q1, which is a del Pezzo surface
of degree 6 as in Lemma 4.10 (Figure 1(4)). If |k| “ 2, the contracted curves are
AutkpXq-invariant and ψ2 lifts to an AutkpXq-equivariant birational map

ϕ2 :“ η´1ψ2π : X 99K X 1

not defined at π´1pqq. Consider the conjugates
ψ2αψ

´1
2 : pru0 : u1s, rv0 : v1sq ÞÑ prv0 : v1s, ru0 : u1sq,

ψ2βψ
´1
2 : pru0 : u1s, rv0 : v1sq Þ99K pru0 : u1s, ru0v0 ` pu1v0 ` u0v1q : u1v1 ` pu0v1 ` u1v0qsq,

ψ2σψ
´1
2 : pru0 : u1s, rv0 : v1sq ÞÑ pru1 : u0s, rv1 : v0sq.

Then ψ2αψ
´1
2 , ψ2σψ

´1
2 P AutkpF0q exchange the geometric components of q1 and

exchange or preserve the rulings of F0, hence lift to elements of AutkpX
1q. The

birational involution ψ2βψ
´1
2 preserves the first ruling of F0 and exchanges its

sections through the components of q1, and it contracts the fibre above tr1 : ζs, r1 :
ζ2su onto q1, so it lifts to an automorphism of X 1. So ϕ2 : X 99K X 1 is an AutkpXq-
equivariant link of type II.

Lemma 7.20. Let |k| “ 2 and let X be the del Pezzo surface of degree 6 from Theo-
rem 1.1p5pbqiq. Any AutkpXq-equivariant link of type II starting from X is one of the
links ϕ1, ϕ2 in Example 7.19, up to automorphisms of the target surface.

Proof. Let ϕ be an AutkpXq-equivariant link of type II starting fromX and let η : Y ÝÑ X
be the blow-up of its base-locus. Then Y ÝÑ ˚ is an AutkpXq-equivariant rank 2 fibration,
and by Remark 7.3 the orbit blown-up by η has ď 5 components. Since rk NSpY qAutkpXq “

2, there are exactly two extremal AutkpXq-equivariant contractions starting from Y ,
namely the birational morphisms η and η1. It follows that the orbit blown up by η deter-
mines ϕ up to automorphisms of X 1. By Lemma 7.17(3), the only AutkpXq-orbits on X
are p :“ pr1 : 1 : 1s, r1 : 1 : 1sq and q :“ tpr1 : ζ : ζ2s, r1 : ζ2 : ζsq, pr1 : ζ2 : ζs, r1 : ζ : ζ2squ,
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ζ R k, ζ3 “ 1. The birational maps ϕ1 : X 99K F0 and ϕ2 : X 99K X 1 in Example 7.19 are
AutkpXq-equivariant links of type II with base-points p and q, respectively. �

Proposition 7.21. Let X be the del Pezzo surface of degree 6 from Theorem 1.1p5pbqiq.
(1) If |k| ě 3, there is no AutkpXq-equivariant link starting from X.
(2) If |k| “ 2, any AutkpXq-equivariant link starting from X is one of the AutkpXq-

equivariant links of type II in Example 7.19, up to automorphisms of the target
surface.

Proof. Since rk NSpXqAutkpXq “ 1, the only AutkpXq-equivariant links starting from X
are of type I or II, and by Remark 7.3, they are not defined in an AutkpXq-orbit with ď 5
geometric components and the blow-up of this orbit is a del Pezzo surface.

If |k| ě 4, no such orbits exist by Lemma 7.17(1). If |k| “ 3, the blow-up of any
AutkpXq-orbitX withď 5 geometric components is not a del Pezzo surface by Lemma 7.17(2).

If |k| “ 2, Lemma 7.18 implies that the blow-up of any AutkpXq-orbit on X with
ď 5 geometric components does not admit an AutkpXq-equivariant conic fibration. In
particular, there is no AutkpXq-equivariant link of type I starting fromX. By Lemma 7.20,
any AutkpXq-equivariant link of type II starting from X is one of the birational maps in
Example 7.19. �

7.6. AutkpX, πq-equivariant links of conic fibrations. We compute all AutkpX, πq-
equivariant links starting from the conic fibrations listed in Theorem 1.1.

Lemma 7.22. Let π : X ÝÑ P1 be a conic fibration from Theorem 1.1p6aq such that
k˚{µnpkq is trivial. Let π1 : Y ÝÑ P1 be a conic fibration such that AutpY {π1q is infinite.
Suppose that there is a AutkpX, πq-equivariant link ψ : X 99K Y of type II. Then Y » X.

Proof. The link ψ preserves the set of singular fibres, of which there are at least 4, and it
commutes with the Galpk{kq-action on the set of geometric components of the singular
fibres. It follows from Lemma 2.8 that Y is obtained by blowing up a Hirzebruch surface.
Since Y is an AutkpX, πq-Mori fibre space by definition of an equivariant link, the subgroup
AutkpX, πq Ď AutkpY, π

1q contains an element exchanging the components of a singular
geometric fibre. Moreover, since AutpY {πq is infinite by hypothesis, Lemma 5.2 implies
that there is a birational morphism η1 : Y ÝÑ Fm blowing up points q1, . . . , qs P Sm
such that

řs
i“1 degpqiq “ 2m. By Lemma 5.4(2) and since k˚{µnpkq is trivial, we have

AutkpX{πq “ xϕy » Z{2 for some involution ϕ. By Lemma 5.4(3) it has a fixed curve
in X, which is the strict transform C of a hyperelliptic curve C 1 in Fn (the irreducible
double cover of P1) ramified at p1, . . . , ps and disjoint from S´n. It follows that C 1 „
2S´n ` 2nf “ 2Sn and hence C2 “ ´4n since the strict transform of Sn is a p´nq-
curve on X. An AutkpX, πq-orbit contains either 1 or 2 points in the same fibre. The
base-points of the AutkpX, πq-equivariant link ψ are therefore necessarily contained in
the AutkpX, πq-fixed curve C. Since C is a double cover of P1, it follows that C2 “ ψpCq2.
The map ψϕψ´1 P AutkpY {π

1q exchanges the components of each singular fibre, so it also
exchanges the two special sections of Y . By Lemma 5.4(3) it fixes a curve D Ă Y , which
satisfies D2 “ ´4m with the same argument as above. It follows that C “ ψ´1pDq, and
now ´4n “ C2 “ D2 “ ´4m implies n “ m. Since ψ induces the identity on P1, we
conclude that tq1, . . . , qsu “ tp1, . . . , pru. �

Lemma 7.23. Suppose that π : X ÝÑ P1 is a conic fibration as in Theorem 1.1p4q or
p6q. Then there are no AutkpX, πq-equivariant links of type I, III and IV starting from
X. Moreover,
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(1) if X “ Fn, n ě 2, there are no AutkpFn, πnq-equivariant links of type II starting
from Fn.

(2) If X is as in Theorem 1.1p6aq and k˚{µnpkq is non-trivial, there are no AutkpX, πq-
equivariant links of type II starting from X.

(3) If X is as in Theorem 1.1p6bq, there are no AutkpX, πq-equivariant links of type
II starting from X.

Proof. Since NSpXqAutkpX,πq » Z2, no AutkpX, πq-equivariant links of type I can start from
X. An AutkpX, πq-link of type III can only start from a del Pezzo surface (see Remark 7.3),
so not from X. Since AutkpX, πq “ AutkpXq, any automorphism of X preserves the conic
bundle structure, so there are no AutkpX, πq-equivariant links of type IV starting from
X.

(1) Suppose that there is a AutkpFnq-equivariant link ψ : Fn 99K Y of type II, and let
B Ă Fn be the orbit of base-points and d ě 1 its number of geometric components. We
have |AutkpFn{πnq| “ |kn`1| ě 23 by Remark 5.1, so the AutkpFn{πnq-orbit of any point
outside the special section has at least two geometric components in the same geometric
fibre. If follows that B Ă S´n and hence ψ is a birational map from Fn to Fn`d and sends
S´n onto S´pn`dq. Let P P krz0, z1sd be a homogeneous polynomial defining B. Then ψ is
of the form

ψ : Fn 99K Fn`d, ry0 : y1; z0 : z1s Þ99K rQpz0, z1qy0 : Rpz0, z1qy0 ` P pz0, z1qy1; z0 : z1s

for some homogeneous Q,R P krz0, z1s of degree d. For any α P AutkpFn{πnq » krz0, z1sn
we have ψαψ´1 P AutkpFn`d{πn`dq, and we compute that it implies λ :“ P

Q
P k˚ and

hence λα P krz0, z1sn`d (see Remark 5.1), contradicting d ě 1.
(2) If π : X ÝÑ P1 is a conic fibration as in Theorem 1.1(6a) and the torus subgroup

k˚{µnpkq Ă AutkpX{πq is non-trivial, then the AutkpX{πq-orbit of a point on a smooth
fibre outside the two p´nq-sections has at least two geometric components in the same
smooth fibre. Since Z{2 Ă AutkpX{πq exchanges the two p´nq-sections, the same holds
for any point contained in them. It follows that there are no AutkpX, πq-equivariant links
of type II starting from X.

(3) Let π : X ÝÑ P1 be a conic fibration as in Theorem 1.1(6b). Consider the subgroup
SOL,L1

pkq of AutkpX{πq fixing the geometric components of the special double section E
from Lemma 5.10(2). Let us show that |SOL,L1

pkq| ě 2. From Lemma 4.14 we obtain:
‚ If L,L1 are not k-isomorphic, then k is infinite, and so SOL,L1

pkq » k˚ is infinite.
‚ If L “ L1, then SOL,L

pkq » tα P L˚ | ααg “ 1u, where g is the generator of
GalpL{kq. If |k| ě 3, then ˘1 P SOL,L

pkq, and if |k| “ 2, then |SOL,L
pkq| “ |L˚| “

3.
In any case, it follows that the AutkpX{πq-orbit of a point on a smooth fibre outside E has
at least two geometric components in the same smooth fibre. Since AutkpX{πq contains
an involution exchanging the geometric components of E by Lemma 5.10(2), the same
holds for any point in E. It follows that there are no AutkpX, πq-equivariant links of type
II starting from X. �

7.7. Proof of Theorem 1.2, Corollary 1.3 and Theorem 1.4. Let G be an affine
algebraic group and let X{B be a G-Mori fibre space that is also a Gpkq-Mori fibre
space. A G-equivariant birational map is in particular Gpkq-equivariant, hence if X is
Gpkq-birationally (super)rigid it is also G-birationally (super)rigid.

On the other hand, G-birationally (super)rigid does not imply Gpkq-birationally (su-
per)rigid: the next lemma shows that the del Pezzo surface X of degree 6 obtained by
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blowing up P2 in three rational points is AutpXq-birationally superrigid and Example 7.19
shows that X is not even AutkpXq-birationally rigid if |k| “ 2.

Lemma 7.24. Any del Pezzo surface X of degree 6 is AutpXq-birationally superrigid.

Proof. The surface Xk is isomorphic to the del Pezzo surface obtained by blowing up
three rational points in P2

k. In particular, rk NSpXkq
AutkpXq “ 1 by Lemma 4.1(3), hence

X is an AutpXq-Mori fibre space and there are no AutpXq-equivariant links of type III
or IV starting from X. The base-locus of an AutpXq-equivariant link of type I or II is an
AutkpXqˆGalpk{kq-orbit on Xk, and by Remark 7.3 it has ď 5 elements. Lemma 7.17(1)
implies that AutkpXq “ AutpXkq has no such orbits. By Theorem 7.2, any AutpXq-
equivariant birational map starting from X decomposes into isomorphisms and AutpXq-
equivariant links. As there are no AutpXq-equivariant links starting from X, it follows
that X is AutpXq-birationally superrigid. �

Proof of Theorem 1.2. (2)–(5) Any surfaceX as in Theorem 1.1(1)–(3), (5a), and (5b) is a
del Pezzo surface that is at the same time a AutkpXq-Mori fibre space and an AutpXq-Mori
fibre space. Any conic fibration π : X ÝÑ P1 as in Theorem 1.1(4) and (6) has AutpXq “
AutpX, πq and AutkpXq “ AutkpX, πq, and it is at the same time a AutkpXq-Mori fibre
space and an AutpXq-Mori fibre space. By Theorem 7.2, any equivariant birational map
between equivariant Mori fibre spaces decomposes into equivariant Sarkisov links, hence
in order to show that an equivariant Mori fibre space X{B is equivariantly birationally
superrigid, it suffices to show that there are no equivariant links starting from X.

(2) For X “ P2, X “ QL and X “ F0 the claim follows from Lemma 7.5 and for
X “ Fn, n ě 2, from Lemma 7.23(1). For X a del Pezzo surface of degree 6 as in (5(b)ii)–
(5(b)iv) the claim follows from Proposition 7.15, and for a conic fibration X{P1 as in (6b)
from Lemma 7.23.

(3) For X a del Pezzo surface of degree 6 as in (5a) the claim is Proposition 7.10.
(4) The claim follows from Proposition 7.21.
(5) The claim follows from Lemma 7.22 and Lemma 7.23(2).
(1) It follows from (2)–(5) that for any surface X in Theorem 1.1 there is an alge-

braic extension L{k such that XL is AutLpXq-birationally superrigid. Therefore, X is also
AutpXq-birationally superrigid. �

Proof of Corollary 1.3. Theorem 1.1 implies (1). By Theorem 1.2(1), the surfaces X in
Theorem 1.1 are AutpXq-birationally superrigid, so the groups AutpXq are maximal and
they are conjugate if and only if their surfaces are isomorphic. Theorem 1.1 now implies
(2).

By Theorem 1.2(2)–(5), the surfaces X from Theorem 1.1(1)–(4) and (5(b)ii)–(5(b)iv),
(6b) are AutkpXq-birationally superrigid. The surfaceX from (6a) are AutkpXq-birationally
rigid within the set of classes of surfaces from Theorem 1.1. The del Pezzo surfaces X
from (5a) and (5(b)i) are AutkpXq-birationally superrigid if |k| ě 3. Hence the listed
groups AutkpXq are maximal and they are conjugate by a birational map if and only if
their surfaces are isomorphic. Theorem 1.1 now implies (3). �

Lemma 7.25. Let k be a perfect field and let F {k be a field extension. The following are
equivalent:

(1) There exists a point p of degree 3 in P2, not all irreducible components collinear,
such that F is the splitting field of p.

(2) F is the splitting field of an irreducible polynomial of degree 3 over k.
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(3) The field extension F {k is Galois and GalpF {kq is isomorphic to a transitive
subgroup of Sym3 (that is to Z{3Z or Sym3).

Proof. (1) implies (2): Since the irreducible components pi of p are not collinear, there is an
irreducible conic defined over k that contains p. With a linear transformation defined over
k this conic can be assumed to be given by x2 ´ yz “ 0, and so pi “ rai : a2

i : 1s for some
ai P F for i “ 1, 2, 3, and ta1, a2, a3u is a Galois orbit. Hence qptq “ pt´a1qpt´a2qpt´a3q P

krts is irreducible. The splitting field L of qptq is kpa1, a2, a3q “ F .
(2) implies (1): Similar to above.
(2) implies (3): By assumption F is the splitting field of an irreducible and hence

separable polynomial f . Therefore, F {k is normal and hence Galois. So GalpF {kq acts
transitively on the three roots of f , hence GalpF {kq is isomorphic to a transitive subgroup
of Sym3.

(3) implies (2): Note that by the Primitive element Theorem, there exists a P F such
that F “ kpaq. Let f be the minimal polynomial of a over k, hence degpfq “ rF : ks “
|GalpF {kq| P t3, 6u. Let L be the splitting field of f , which is a normal extension of k. In
particular, F “ kpaq “ L. Hence, if degpfq “ 3 we are done.

In the other case we have GalpF {kq » Sym3, so degpfq “ 6. The roots of f form one
Galois-orbit. After fixing an isomorphism GalpF {kq » Sym3, we write σij “ pijq, and we
write τ “ p123q. So we can write the six roots of f as ai “ τ ipaq for i “ 1, 2, 3 (so a3 “ a),
and a4 “ σ13paq, a5 “ σ23paq, a6 “ σ12paq. Set

b1 “ a1a4, b2 “ a2a5, b3 “ a3a6

and note that the σij act as transposition of bi, bj, and that that τ is the translation
b1 ÞÑ b2 ÞÑ b3. So tb1, b2, b3u is a GalpF {kq-orbit of size 3 with minimal polynomial
g “ pt ´ b1qpt ´ b2qpt ´ b3q P krts. So the splitting field L1 of g is contained in F and its
Galois group is isomorphic to Sym3. Hence

6 “ |GalpL1{kq| “ rL1 : ks ď rF : ks “ 6,
which implies F “ L1 is the splitting field of an irreducible polynomial of degree 3. �

Proof of Theorem 1.4. By Corollary 1.3(3) it suffices to list the isomorphism classes of the
surfaces in Theorem 1.1(1)–(4), (5(b)ii)–(5(b)iv), (6), and for (5a) and (5(b)i) if |k| ě 3.

The plane P2 is unique up to isomorphism by Châtelet’s Theorem, F0 is unique up to
isomorphism by Lemma 3.2(1), and for any k-isomorphism class of quadratic extensions
L{k we have a unique isomorphism class of QL, also by Lemma 3.2(1). Hirzebruch sur-
faces are determined by their special section. The parametrisation of the classes of del
Pezzo surfaces from (5a) follows from Lemma 4.6(3), Lemma 4.7(3) and Lemma 7.25. The
parametrisation of the classes of del Pezzo surfaces from (5b) follows from Lemma 4.1(1),
Lemma 4.2(2), Lemma 4.3(2), Lemma 4.10(2) and Lemma 7.25. The parametrisations for
the conic fibrations from (6a) and (6b) follow from Lemma 5.6 and Lemma 5.12. �

8. The image by a quotient homomorphism

We call two Mori fibre spaces X1{P1 and X2{P1 equivalent if there is a birational map
X1 99K X2 that preserves the fibrations. In particular, if ϕ : X1 99K X2 is a link of type
II between Mori fibre spaces X1{P1 and X2{P1, then these two are equivalent. There is
only one class of Mori fibre spaces birational to F1 [33, Lemma], because all rational
points in P2 are equivalent up to AutpP2q. We denote by J6 the set of classes of Mori fibre
spaces birational to some SL,L1 , and by J5 the set of classes birational to a blow-up of P2
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in a point of degree 4 whose geometric components are in general position. We call two
Sarkisov links ϕ and ϕ1 of type II between conic fibrations equivalent if the conic fibrations
are equivalent and and if the base-points of ϕ and ϕ1 have the same degree. For a class C
of equivalent rational Mori fibre spaces, we denote by MpCq the set of equivalence classes
of links of type II between conic fibrations in the class C whose base-points have degree
ě 16.

Proof of Proposition 1.5. First, suppose that rk : ks “ 2. Then every non-trivial algebraic
extension of k is k by [1, Satz 4] and k is of characteristic zero [1, p.231]. In particular,
P2 contains no points of degree ě 3, and so the only rational Mori fibre spaces are
Hirzebruch surfaces and Sk,k ÝÑ P1. Moreover, MpF1q is empty. By [40, Theorem 1.3],
there is a surjective homomorphism BirRpP2q ÝÑ

À

I Z{2, where |I| “ |R|. In fact, by
construction of the homomorphism, there is a natural bijection I ÝÑ t

|a|
a2`b2 | a, b P

R, b ‰ 0u. The whole article [39] can be translated word-by-word over a field k with
rk : ks “ 2, and consequently we have a surjective homomorphism BirkpP2q ÝÑ

À

I Z{2,
where I “ t a2

a2`b2 | a, b P k, b ‰ 0u (we replace |a| by a2), and I has the cardinality of k.
If rk : ks ą 2, the result is [33, Theorem 3, Theorem 4.]. �

Definition 8.1. Let BirMoripP2q be the groupoid of birational maps between Mori fibre
spaces birational to P2. It is generated by Sarkisov links by Theorem 7.2. The homomor-
phism Ψ̃ of groupoids from [33, Theorem 3, Theorem 4]

BirMoripP12q p
À

χPMpF1q
Z{2q˚CPJ5p

À

χPMpCq Z{2q ˚ p˚CPJ6

À

χPMpCq Z{2q

Ď

BirkpP2q

Ψ̃

Ψ

sends any Sarkisov link of type II between conic fibrations and whose base-point has
degree ě 16 onto the generator indexed by its class, and it sends all other Sarkisov links
and all isomorphisms between Mori fibre spaces to zero.

Remark 8.2. The homomorphism Ψ is non-trivial. Indeed, the surjective homomorphism
BirkpP2q ÝÑ p

À

I0
Z{2q ˚ p˚J5

À

I Z{2q ˚ p˚J6

À

I Z{2q from [33, Theorem 4] is obtained
by composing Ψ with suitable projections within each abelian factor of the free product,
see [33, Proof of Theorem 4 in §6].

We now compute the images by Ψ of k-points of the maximal algebraic subgroups of
BirkpP2q listed in Theorem 1.1.

Remark 8.3. By definition of the groupoid homomorphism Ψ̃ (Definition 8.1), it maps au-
tomorphism groups of Mori fibre spaces onto zero, so the groups ΨpAutkpP2qq, Ψ̃pAutkpQLqq,
Ψ̃pAutkpFnqq, n ‰ 1, and Ψ̃pAutpSL,L1 , πqq are trivial. A del Pezzo surface X of degree 6
as in Theorem 1.1(5a) is a Mori fibre space by Lemma 4.6 and Lemma 4.7, so Ψ̃pAutkpXqq
is trivial as well.

If X is a del Pezzo surface from Theorem 1(5c), there exists a birational morphism
η : X ÝÑ QL such that ηAutkpXqη

´1 Ă AutkpQLq, so in particular Ψ̃pηAutkpXqη
´1q is

trivial as well.

Lemma 8.4. Let X be a del Pezzo surface of degree 6 from Theorem 1.1p5bq, which
is equipped with a birational morphism η : X ÝÑ Y to Y “ P2 or Y “ F0. Then
Ψ̃pηAutkpXqη

´1q is trivial.
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Proof. Let X be a del Pezzo surface of degree 6 from Theorem 1.1(5(b)i), (5(b)iii), and
(5(b)iv), which is the blow-up η : X ÝÑ P2 in three rational points or in a point of
degree 3. By Lemma 4.1(2), Lemma 4.2(3) and Lemma 4.3(3), the group ηAutkpXqη

´1

is generated by subgroups of AutkpP2q and a quadratic involution of P2 that has either
three rational base-points or is a Sarkisov link of type II with a base-point of degree 3. It
follows from the definition of Ψ̃ (Definition 8.1) that Ψ̃pηAutkpXqη

´1q is trivial.
The del Pezzo surfaceX of degree 6 from Theorem 1.1(5(b)ii) is the blow-up of η : X ÝÑ

F0 in a point of degree 2. By Lemma 4.10(3), the group ηAutkpXqη
´1 is generated by

subgroups of AutkpF0q and a birational involution of F0 that is a link of type II of conic
fibrations with a base-point of degree 2. Again it follows that Ψ̃pηAutkpXqη

´1q is trivial.
�

Lemma 8.5. Let n ě 2 and let ϕ : Fn 99K Fn be the involution from Example 5.3 with
base-points p1, . . . , pr P Fn. Then there exist links ϕ1, . . . , ϕr of type II between Hirzebruch
surfaces such that ϕi has a base-point of degree degppiq and ϕ “ ϕr ¨ ¨ ¨ϕ1.

Proof. Recall from Example 5.3 that p1, . . . , pr are contained in the section Sn Ă Fn and
that the homogeneous polynomials Pi P krz0, z1sdegppiq define πppiq. The involution ϕ is
given by

ϕ : py1, z1q 99K pP pz1q{y1, z1q

We define d0 :“ 0 and di :“
ři
j“1 degppjq. For i “ 1, . . . , r, the birational maps

ϕi : Fn´di´1 99K Fn´di , py1, z1q Þ99K py1{Pipz1q, z1q di ď n,

ϕi : Fn´di´1 99K Fdi´n, py1, z1q Þ99K pPipz1q{y1, z1q di´1 ď n, di ą n

ϕi : Fdi´1´n 99K Fdi´n, py1, z1q Þ99K pPipz1qy1, z1q, di´1 ą n

are links of type II with a base-point of degree degppiq, and we compute that ϕ “ ϕr ¨ ¨ ¨ϕ1.
�

Lemma 8.6. Let π : X ÝÑ P1 be a conic fibration from Theorem 1.1(6a) and let η : X ÝÑ

Fn, n ě 2, be the birational morphism blowing up p1, . . . , pr. Let ϕ : Fn 99K Fn be the
involution from Example 5.3 and ϕ “ ϕr ¨ ¨ ¨ϕ1 the decomposition into links of type II
from Lemma 8.5. Then Ψ̃pηAutkpX, πqη

´1q is generated by the element Ψ̃pϕq “ Ψ̃pϕrq `
¨ ¨ ¨ ` Ψ̃pϕ1q.

Proof. Let ∆ Ă P1 be the image of the singular fibres of X. By Lemma 5.4(1–2), we have
AutkpX, πq » AutkpX{πq ¸ AutkpP1,∆q and AutkpX{πq » H ¸ xη´1ϕηy

where ηHη´1 Ă AutkpFnq. Moreover, any α P AutkpP1,∆q lifts to an element α̃ P

AutkpFn, p1, . . . , prq, which lifts via η to an element of AutkpX, πq. It follows from the defi-
nition of Ψ̃ that Ψ̃pηAutkpP1,∆qη´1q and Ψ̃pηHη´1q are trivial, and that Ψ̃pηAutkpX, πqη

´1q

is generated by Ψ̃pϕq “ Ψ̃pϕrq ` ¨ ¨ ¨ ` Ψ̃pϕ1q. �

Lemma 8.7. Let ϕ : SL,L1 99K SL,L1 be the involution from Example 5.9 with base-points
p1, . . . , pr P SL,L1. Then there exist links ϕ1, . . . , ϕr : SL,L1 99K SL,L1 of type II over P1 and
α P AutkpSL,L1{πq such that ϕi has base-point pi and such that ϕ “ αϕr ¨ ¨ ¨ϕ1.

Proof. It suffices to construct the ϕi for the involution ϕ in the case that L “ L1, since
the involution for the other case is obtained by conjugating ϕ with a suitable element of
γ P PGL2pkq ˆ PGL2pkq, see Example 5.9. Let E1, E2 be the geometric components of
the unique irreducible curve contracted by any birational contraction η : SL,L1 ÝÑ QL.
For i “ 1, . . . , r, let Ti1, Ti2 P Lrx, ys be the homogeneous polynomials defining the fibres
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through the geometric components of the pi contained in E1, E2, respectively. Let P1 :“
T11 ¨ ¨ ¨Tr1 and P2 :“ T12 ¨ ¨ ¨Tr2. Recall from Example 5.9 that ψ :“ ηφη´1 is of the form
ψ : pru0 : u1s, rv0 : v1sq Þ99K prv0P1pu0v0, u1v1q : v1P2pu0v0, u1v1qs, ru0P2pu0v0, u1v1q : u1P1pu0v0, u1v1qsq

For i “ 1, . . . , r, define

ψi : pru0 : u1s, rv0 : v1sq Þ99K pru0Ti2pu0v0, u1v1q : u1Ti1pu0v0, u1v1qs,

rv0Ti1pu0v0, u1v1q : v1Ti2pu0v0, u1v1qsq

and let
α̃ : pru0 : u1s, rv0 : v1sq Þ99K prv0 : v1s, ru0 : u1sq.

Then αψr ¨ ¨ ¨ψ1 “ ψ. We take ϕi :“ η´1ψiη and α :“ η´1α̃η. �

Lemma 8.8. Let π : X ÝÑ P1 be a conic fibration from Theorem 1.1p6bq and let η : X ÝÑ

SL,L1 be the birational morphism blowing up p1, . . . , pr. Let ϕ : SL,L1 99K SL,L1 be the invo-
lution from Example 5.9 and let ϕ “ αϕr ¨ ¨ ¨ϕ1 be the decomposition into links ϕi of type
II and an automorphism α P AutkpSL,L1 , πq from Lemma 8.7. Then Ψ̃pηAutkpX, πqη

´1q

is generated by the element Ψ̃pϕq “ Ψ̃pϕrq ` ¨ ¨ ¨ ` Ψ̃pϕ1q.
Proof. Let ∆ Ă P1 be the image of the singular fibres of X. By Proposition 5.10(1–2), we
have
AutkpX, πq » AutkpX{πq ¸ ppD

L,L1

k ¸ Z{2q XAutkpP1,∆qq, AutkpX{πq » H ¸ xη´1ϕηy

where ηHη´1 Ă AutkpSL,L1{πq. Moreover, any element of G :“ DL,L1

k ¸Z{2XAutkpP1,∆q
lifts to an element of AutkpSL,L1 , πq, which lifts via η to an element of AutkpX, πq. It
follows from the definition of Ψ̃, that Ψ̃pηGη´1q, Ψ̃pηHη´1q and Ψ̃pαq are trivial, and
hence that Ψ̃pηAutkpX, πqη

´1q is generated by Ψ̃pϕq “ Ψ̃pϕrq ` ¨ ¨ ¨ ` Ψ̃pϕ1q. �

Proof of Proposition 1.7. Let G be an infinite algebraic subgroup of BirkpP2q. By Theo-
rem 1.1, it is conjugate by a birational map to a subgroup of AutpXq, where X is one of
the surfaces listed in Theorem 1.1. We now compute ΨpθAutkpXqθ

´1q for some birational
map θ : P2 99K X. For any birational morphism η : X ÝÑ Y to a Mori fibre space Y {B,
we have

ΨpθAutkpXqθ
´1
q “ Ψ̃pθ´1η´1

qΨ̃pηAutkpXqη
´1
qΨ̃pηθq.

For the surfaces X from Theorem 1.1(1)–(5), there exists such a birational morphism η
such that Ψ̃pηAutkpXqη

´1q is trivial by Remark 8.3 and Lemma 8.4, and hence ΨpθAutkpXqθ
´1q

is trivial. Hence, if ΨpGpkqq is not trivial then X is as in Theorem 1.1(6) and (1) follows.
Let X{P1 be a conic fibration from Theorem 1.1(6), which is the blow-up η : X ÝÑ Y

of points p1, . . . , pr P Y and Y “ Fn, n ě 2 or Y “ SL,L1 . By Lemma 8.6 and Lemma 8.8
the image Ψ̃pηAutkpXqη

´1q is generated by the element Ψ̃pϕrq ` ¨ ¨ ¨ ` Ψ̃pϕ1q, where ϕi is
a link of type II between conic fibrations in the respective class and whose base-point is
of degree degppiq. In particular, since each factor of the free product is abelian, it follows
that ΨpθAutkpXqθ

´1q is generated by Ψ̃pϕrq ` ¨ ¨ ¨ ` Ψ̃pϕ1q.
By definition of Ψ̃ the image Ψ̃pϕiq is non-trivial if and only if degppiq ě 16. Therefore,

if Ψ̃pϕrq ` ¨ ¨ ¨ ` Ψ̃pϕ1q is non-trivial, it is the element indexed by the i1, . . . , is such
that degppikq ě 16 and we infer that |tj P t1, . . . , ru | degppjq “ degppikqu| is odd for
k “ 1, . . . , s. This proves (2). In particular, ΨpGpkqq » Z{2Z. �
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