
FINDING NORMAL SUBGROUPS OF THE CREMONA GROUP

SUSANNA ZIMMERMANN

Abstract. This is a survey on what is known, up to date, on normal subgroups of
Cremona groups. There are several different approaches to showing they exist and we
will take a look at each of them, more or less in chronological order.
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1. Introduction

Let k be a field. The Cremona group BirpPn
kq is the group of birational self-maps of

Pn
k, that is, the group of isomorphism between dense open sets of Pn

k. If we choose affine
coordinates on Pn

k, they have the form
px1 . . . , xnq Þ99K pf1px0, . . . , xnq, . . . , fnpx0, . . . , xnqq

where f1, . . . , fn P kpx0, . . . , xnq are non-zero. They are well studied if n “ 2 and harder
to study when n ě 3. The reader may find in [7, 27, 38] very well written and accessible
introductions to plane Cremona groups.

Recall that a group is simple if its only normal subgroups are the trivial group and the
whole group itself. If n “ 1, we have BirpP1

kq “ AutpP1
kq » PGL2pkq, which is a simple

group when k is algebraically closed. The earliest reference mentioning the problem of
(non-)simplicity of Cremona groups is in a book by F. Enriques in 1895:

Tuttavia altre questioni d’indole gruppale relative al gruppo Cremona nel
piano ped a più forte ragione in Sn n ą 2q rimangono ancora insolute; ad
esempio l’importante questione se il gruppo Cremona contenga alcun sot-
togruppo invariante pquestione alla quale sembra probabile si debba rispon-
dere negativamenteq.
[18, p. 116]1

The problem was also mentioned in the article of V. Iskovskikh in the Encyclopedia:
It is not known to date p1987q whether the Cremona group is simple. [23]

The idea of F. Enriques that the Cremona group should be simple was perhaps motivated
by the analogy with automorphism groups of projective varieties, such as AutpPnq “
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2 SUSANNA ZIMMERMANN

PGLn`1pkq when k is algebraically closed. Or perhaps by the fact that the normal sub-
group generated by a nice birational map of P2

k is the whole of BirpP2
kq:

Lemma 1.1. Let k be an algebraically closed field and let α P AutpP2
kq be a non-trivial

automorphism of P2
k. Then the normal subgroup xxαyy of BirpP2

kq generated by α is equal
to BirpP2

kq.

Proof. Since k is algebraically closed, PGL3pkq “ PSL3pkq is a simple group and so we
have PGL3pkq Ă xxαyy and hence xxPGL3pkqyy Ă xxαyy. The Noether-Castelnuovo theorem
[12] states that BirpP2

kq is generated by PGL3pkq and σ : px, yq Þ99K p 1
x
, 1

y
q. Set h : px, yq ÞÑ

p1 ´ x, 1 ´ yq and compute that pσhq3 “ id. Then phσhqσphσhq´1 “ phσhqσphσhq “ h P

PGL3pkq, so σ is contained in xxPGL3pkqyy. It follows that BirpP2
kq “ xxαyy. □

Lemma 1.2 ([20, Lemma 2]). Let k be an algebraically closed field. If f P BirpP2
kq pre-

serves a pencil of lines, then the normal subgroup xxfyy of BirpP2
kq generated by f is equal

to BirpP2
kq.

We see from the above lemmas that it is not straight forward at all to find proper normal
subgroups of BirpP2

kq, even with amazing calculation skills and/or computing power. In
Section 2 we will follow the approach of S. Cantat, S. Lamy and A. Lonjou to show the
existence of non-trivial proper normal subgroups of BirpP2

kq over any field [11, 33] and
visit the work of S. Cantat, V. Guirardel and A. Lonjou who achieved an almost complete
description of infinite order elements of BirpP2

kq generating a proper normal subgroup if k
is algebraically closed [9]. A classification can also be found in [37]. The normal subgroups
N found by A. Lonjou are large and moreover their quotients BirpP2

kq{N are SQ-universal,
that is, any finitely generated groups embeds into a quotient of BirpP2

kq{N [14]. We will
also go into the construction of normal subgroups of BirpP2

kq by J. Schneider [36] over
perfect fields.

The technique used in [11, 33] cannot be easily generalised to dimension n ě 3. In
Section 3 we will follow the approach of J. Blanc, S. Lamy and the author who show that
BirpPn

kq, n ě 3, is not simple if k is of characteristic zero by constructing many non-trivial
surjective morphisms of groups BirpPn

kq ÝÑ Z{2.
We will then look at the approach of H.-Y. Lin and E. Shinder who construct a surjective

morphism of groups BirpPn
kq ÝÑ Z for n ě 3 and a large family of fields [31]. Last but

not least, we will explain the approach of J. Blanc, J. Schneider and E. Yasinsky who
construct surjective morphisms of groups BirpPn

kq ÝÑ FpCq to the free group FpCq over
C for n ě 4 and fields of characteristic zero.

The works [1] and [31] leave open (for the moment) the following problems in dimension
n ě 3:

Problem 1.3. Let k be a field of characteristic zero. Is BirpP3
kq non-simple if k is not a

function field over a number field or a function field over an algebraically closed field?

Problem 1.4. Let k be a field of positive characteristic. Is BirpPn
kq non-simple if

‚ n “ 3 and k is not a function field over a finite field?
‚ n “ 4?
‚ n ě 5 and k is finite?

Hopefully, the reader will find it natural to formulate open problems concerning normal
subgroups of Cremona groups or quotient maps of Cremona groups after enjoying this
survey.

Acknowledgements: The author thanks Anne Lonjou for carefully reading parts of this
survey and for her very helpful feedback.
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2. Normal subgroups in dimension 2

2.1. The existence of normal subgroups of the plane Cremona group. In this
section, k is any field, and all surfaces, curves and morphisms are defined over k, and we
write P2 instead of P2

k. As explained in the introduction (Lemma 1.1 and Lemma 1.2), it
is hopeless to just find proper normal subgroups of BirpP2q by trying to make an educated
guess. A different approach is needed and S. Cantat, S. Lamy and A. Lonjou chose to
approach the problem with geometric group theory [11, 34].

In a nut shell, their approach is the following: find a hyperbolic space on which BirpP2q

acts by isometries and use geometric group theory to show the existence of normal sub-
groups of BirpP2q.

2.1.1. The infinite-dimensional hyperbolic space on which BirpP2q acts. In a slightly bigger
nutshell, the approach is the follwing: the Cremona group does not act on the space of
curves P2 because birational maps that are not automorphisms contract some curves onto
points. Let us blow up all points on P2 and look at the space ZCpP2q of all curves on all
these blow-ups. It is the inductive limit of the Néron-Severi spaces of surfaces obtained by
blowing up P2 and it is a Z-module. The intersection form of curves on P2 lifts to ZCpP2q,
but the space is “too discrete”. If we tensor with R, the space is not complete and we
consider its ℓ2-completion and obtain a Hilbert space ZpP2q, called Picard-Manin space
of P2. The intersection form on ZpP2q cuts out from ZpP2q a hyperbolic space H8pP2q of
infinite dimension, and BirpP2q acts on H8pP2q by isometries.

Let us now be more precise about the construction of H8pP2q. The pullback of a bi-
rational morphism π : S ÝÑ P2

k induces an injection NSpP2q ãÑ NSpSq, D ÞÑ π˚D. We
consider the inductive limit

ZCpP2
q :“ lim

SÝÑP2
NSpSq

over all birational morphisms S ÝÑ P2. The C in ZCpSq is a notation referring to Cartier
b-divisors, see [19] for more information. The inductive limit identifies divisors as follows:
if S2

π2
ÝÑ S1

π1
ÝÑ P2 are two birational morphisms and D a curve on P2, then the class

D̄ P ZpP2q of D represents D and π˚
1 D and pπ1 ˝ π2q˚D. We can think

ZCpP2
q “ NSpP2

q ‘
`

‘pPBpP2qZep

˘

,

where ep is the class of the exceptional divisors of p and where BpP2q is the set of all
points of all smooth projective surfaces with a birational morphism to P2 and we identify
points around which the birational morphism is an isomorphism (it is called Bubble space
of P2).

The set ZCpP2q is endowed with a natural intersection form of signature p1, 8q: if C, D
are curves on P2, then pπ1 ˝ π2q˚C ¨ pπ1 ˝ π2q˚D “ π˚

1 C ¨ π˚
1 D “ C ¨ D. If C, D are

two curves on surfaces S1, S2, respectively, with a birational morphism to P2, consider
the resolution pp, qq : S0 ÝÑ S1 ˆ S2 of the induced birational map S1 99K S2. We can
intersect p˚C and q˚D, and the above shows that this intersection does not depend on
the choice of resolution. So, if c, d P ZCpP2q are the classes of the curves C, D, the integer
c¨d :“ p˚C ¨q˚D is well-defined. This defines an intersection form on ZCpP2q. If ep P ZCpP2q

denotes the class of the exceptional divisor of a point p P BpP2q, then e2
p “ ´1 and if

p, q P BpP2q are distinct points, then ep ¨ eq “ 0. So, the intersection form has signature
p1, 8q.

We now tensor ZCpP2q with R to get a vector space:
ZCpP2

qR :“ pNSpP2
q b Rq ‘

`

‘pPBpP2qRep

˘

,
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The intersection form on ZCpP2q extends naturally to an intersection form on ZCpP2q.
Consider the ℓ2-completion of ZCpP2qR

ZpP2
q :“

#

D̄ `
ÿ

pPBpP2q

λpep | λp P R,
ÿ

pPBpP2q

λ2
p ă 8, D P NSpP2

q b R

+

,

It is called Picard-Manin space of P2 and we can again think

ZpP2
q Ď pNSpP2

q b Rq ‘

˜

ÿ

pPBpP2q

Rep

¸

.

The intersection form on ZCpP2qR extends naturally to an intersection form on ZpP2q

of signature p1, 8q and makes ZpP2q a Hilbert space. It cuts out a hyperbolic space as
follows: if ℓ P ZCpP2q is the class of a line in P2, we set

H8
pP2

q :“ tc P ZpP2
q | c ¨ c “ 1, c.ℓ ą 0u

and endow it with the metric dpc1, c2q “ arcoshpc1 ¨ c2q, c1, c2 P H8pP2q, which makes
H8pP2q a hyperbolic space of infinite dimension; the condition c ¨ c “ 1 cuts out two
hyperbolic spaces and the condition c ¨ ℓ ą 0 chooses one connected component.

Now, let’s define the action of BirpP2q on our hyperbolic space. The action should reflect
that if f is a local isomorphism at a point p, then f sends the class of the exceptional
divisor of p to the class of the exceptional divisor of fppq; we want f#pepq “ efppq. If L
is a general line in P2, then f sends L onto a curve C passing through all base-points
p1, . . . , pn of f´1, and the degree degpfq :“ degpCq and its multiplicities mpi

pfq at the
base-points of f´1 do not depend on the choice of L. Then f should send the class L̄ onto
the class C̄. In other words, we want f#pL̄q “ degpfqL̄ ´ mp1pfqep1 ´ ¨ ¨ ¨ ´ mpnpfqepn .

We will not go into more detail of the definition of the action, which can be found for
instance in [34, §1.2.3]. What is important is that because of the way the intersection lifts
onto blow-ups of points, we have f#pc1q ¨ f#pc2q “ c1 ¨ c2 for any c1, c2 P ZpP2q. So, the
H8pP2q and its hyperbolic metric are invariant under the action of BirpP2q on ZpP2q. We
have reached our goal: BirpP2q acts faithfully on the infinite hyperbolic space H8pP2q by
isometries.

One can check that H8pP2q is a complete CAT(0) metric space. This gives rise to the
notion of boundary at infinity, which we denote by BH8pP2q. Details on this may be found
for instance in [6, Chapter II.8].

This is a good moment to notice that while the construction of ZpP2q generalizes to
higher dimension, the construction of the hyperbolic space H8pP2q does not, because
there is no bilinear intersection form of divisors in higher dimension. The articles [15, 16]
of N.-B. Dang and C. Favre indicate how in higher dimension the hyperbolic space may
be replaced by a Banach space.

The elements of BirpP2q satisfy analogues of classical properties of isometries of finite
dimensional hyerbolic spaces. For f P BirpP2q, let Lpfq :“ inftdpfpxq, xq | x P H8pP2qu.
Then f is exactly one of the following three types:

‚ elliptic, if Lpfq “ 0 and the infinum is achieved, and then f has a fixed point in
H8pP2q;

‚ parabolic, if Lpfq “ 0 and the infinum is not achieved, and then f fixes exactly
one point on BH8pP2q;

‚ hyperbolic/loxodromic, if Lpfq ą 0. In this case, Axpfq :“ tx P H8pP2q | Lpfq “

dpfpxq, xqu is a geodesic and f acts by translation on it with translation length
Lpfq. Moreover, f has exactly two fixed points on BH8pP2q, one is attractive, the
other repulsive.
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The property of being elliptic/parabloic/loxodromic is related to the dynamical degree
λpfq “ limnÝÑ8 degpfnq1{n of f . The relation between the dynamical degree and the
isometry type is the following [8, Theorem 3.7]:

‚ elliptic ðñ growth of degpfnq is bounded
‚ parabolic ðñ growth of degpfnq is linear or quadratic
‚ hyperbolic/loxodromic ðñ growth of degpfnq is exponential.

In the story of normal subgroups of BirpP2q, hyperbolic elements of BirpP2q play a main
role.

2.1.2. Small simplification and normal subgroups of BirpP2q. We have established that
BirpP2q acts by isometries on a hyperbolic space H8pP2q. This is a set-up for using geo-
metric group geometry, more specifically small simplification, to show the existence of
normal subgroups of BirpP2q.

Let g P BirpP2q. Every element of the normal subgroup xxgyy Ă BirpP2q generated by g
is of the form hr ¨ ¨ ¨ h1, where each hi is a conjguate of g or g´1, that is, hi “ sigs´1

i or
hi “ sig

´1s´1
i for some si P BirpP2q. If g is hyperbolic, this means that each hi has fixed

axis siAxpgq.
In [11], S. Cantat and S. Lamy define the following property if k is algebraically closed.

A hyperbolic element g P BirpP2q is tight if the following two conditions hold:
‚ there is some B ą 0 such that if f P BirpP2q and fpAxpgqq contains two points at

distance B which are at distance at most one from Axpgq, then fpAxpgqq “ Axpgq.
‚ If f P BirpP2q and fpAxpgqq “ Axpgq, then fgf´1 “ g˘1.

In less precise words, a hyperbolic element of g P BirpP2q is tight if any element of BirpP2q

sending Axpgq to an axis close to Axpgq over a long period of time is conjugate to g or
g´1. This notion allowed them to show the following theorem, which is a variant of small
simplification:
Theorem 2.1 ([11]). Let k be an algebraically closed field. If g P BirpP2q is tight, then
there exists an integer n ě 1 such that any nontrivial element h P xxgnyy satisfies degphq ě

degpgnq. In particular, xxgnyy is a strict subgroup of BirpP2q.

Theorem 2.2 ([11]). If k is algebraically closed, then BirpP2q contains tight elements. In
particular, BirpP2q is not simple.

In fact, they showed that any general element in BirpP2q is tight, if k is algebraically
closed [11, Theorem 5.2]. A generalisation of the above theorem for a larger family of
base-fields was obtained by N. I. Shepherd-Barron:
Theorem 2.3 ([37]). Let k be a field and g P BirpP2q a hyperbolic element. Suppose that
Lpgq is not the logarithm of a quadratic unit; if charpkq “ p ą 0, assume also that k is
algebraic and Lpgq is not an integral multiple of logppq. Then some power of g is tight.
In particular, g R xxgN yy for sufficiently large N P N, and so xxgN yy is a proper normal
subgroup of BirpP2q.

Theorem 2.4 ([37]). Let k be a finite field and g P BirpP2q a hyperbolic element. Then g
is tight and g R xxgN yy for sufficiently large N P N.

When A. Lonjou set out to show non-simplicity of the plane Cremona group over
any base-field k, she used a notion common in geometric group theory. We say that a
hyperbolic isometry g of H8pP2

kq acts discretely on its axis Axpgq or to have property
WPD (weak proper discontinuity), if there exists x P H8pP2

kq such that for any ε ą 0,
there exists an integer n ą 0 such that

Fixεtx, gn
pxqu :“ tf P BirpP2

q | dpx, fpxqq ă ε, dpgn
pxq, fpgn

pxqqq ă εu
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is finite [33, §1.2]. In very unprecise words, a hyperbolic element g P BirpP2q has property
WPD if there are only a finite number of elements of BirpP2q that move Axpgq onto an
axis close to Axpgq. The definition is equivalent to the one where we replace “there exists
x P H8pP2

kq such that for all ε ą 0...” by “for all x P H8pP2
kq and for any ε ą 0...” [33,

Lemma 5].
The notion of tight and satisfying property WPD are related, but see [28, Examples 5.10

and 5.11] for examples of elements of BirpP2q that are tight but do not satisfy property
WPD and examples of elements that are not tight but satisfy property WPD.

The notion of having property WPD was used by F. Dahmani, V. Guirardel and D.
Osin in [14] to show the existence of normal subgroups:

Theorem 2.5 ([14]). Let C P Rą0 and let G be a group acting by isometries on a hyper-
bolic space X in the sense of Gromov (see [14, §3] and [21]) and let g P G be a hyperbolic
element. If G acts discretly on the axis Axpgq of g, then there is an integer n ě 1 such
that for any nontrivial element h P xxgnyy we have Lphq ą C, where Lphq is the length of
the translation by h on Axpgq.

In particular, for n large enough, xxgnyy is a strict subgroup of G. Moreover, xxgnyy is a
free group.

A. Lonjou showed that BirpP2q contains hyperbolic elements with property WPD:

Theorem 2.6 ([33]). Let m ě 2 and k be a field of characteristic p ě 0 that does
not divide m. Then BirpP2q acts discretely on the axis of gm : px, yq ÞÑ py, ym ´ xq. In
particular, there exists an integer n ě 1 such that xxgnyy is a strict subgroup of BirpP2q.

For more on small simplification and Cremona groups, see [11, 28]. The normal sub-
groups xxgnyy of BirpP2q found by A. Lonjou are large, since they are free groups. However,
also their quotients are large: by [14], they are SQ-universal, meaning that any finitely
generated group embeds into a quotient of BirpP2q{xxgnyy.

2.1.3. Classification of normal subgroups of BirpP2q generated by one element. The normal
subgroups generated by one element are almost classified by S. Cantat, V. Guirardel and
A. Lonjou and also separately by N. I. Shepherd-Barron.

A monomial element of BirpP2q is of the form px, yq ÞÑ pxayb, xcydq, a, b, c, d P Z,
ad ´ bc ‰ 0, and they make up a group isomorphic to GL2pZq. It is the group of elements
in BirpP2q commuting with the canonical torus action on P2.

If charpkq “ p ą 0, there are special transformations of P2: we define the group
p AutpA2

kq of p-automorphisms to be the normaliser in AutpA2
kq of the group of trans-

lations tu,v : px, yq ÞÑ px ` u, y ` vq. It has the following description: let Fr: t ÞÑ tp be the
Frobenius endomorphism of k. Let krFrs be the (non-commutative) algebra of polynomi-
als of the form

ř

ait
pj

“
ř

aiFrj
ptq, where Frj is the j-th composition of Fr. The k-points

of the group of algebraic automorphisms of Ga,k ˆ Ga,k coincides with GL2pkrFrsq and
pp AutpA2qqpkq » pGa,kpkq ˆ Ga,kpkqq ¸ GL2pkrFrsq [10, §3.3.1].

Theorem 2.7 ([10]). Let k be an algebraically closed field and let f P BirpP2q be of infinite
order. The following are equivalent:

‚ there exists n ě 1 such that xxfnyy is a strict normal subgroup of BirpP2q.
‚ The growth of degpfnq is quadratic or f is a hyperbolic element not conjugate to

a monomial transformation with or to a p-automorphism if charpkq “ p ą 0.

2.2. Non-trivial quotients from the plane Cremona group to Z{2 and the Sark-
isov program. In this section, we look at the second type of construction of normal
subgroups of Cremona groups of the plane. We also glance at the tool used for it, the
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so-called Sarkisov program. In this section, the base field matters and so we will again
write P2

k and BirpP2
kq.

2.2.1. Non-trivial quotients BirpP2
kq ÝÑ Z{2. When looking for normal subgroups, an-

other approach is to try to cook up non-trivial quotient maps whose kernel is non-trivial.
For the Cremona group over an algebraically closed field, it is not straight forward to find
one, as the following statement indicates.
Lemma 2.8. Let k be an algebraically closed field. Then the following hold:

(1) Any homomorphism BirpP2
kq ÝÑ G to a finite group G is trivial.

(2) The commutator subgroup of BirpP2
kq is equal to BirpP2

kq.
Proof. If a homomorphism φ : BirpP2

kq ÝÑ G to a finite group G exists, then kerpφq

contains a non-trivial element AutpP2
kq » PGL3pkq “ PSL3pkq. Since the latter is a

simple group, AutpP2
kq is contained in kerpφq. Moreover, the involutions h : px, yq ÞÑ p1 ´

x, 1 ´ yq and σ : px, yq Þ99K p 1
x
, 1

y
q satisfy the relation pσhq3 “ id. It follows that σ “

phσqhphσq´1 is contained in kerpφq as well. By the Noether-Castelnuov theorem [12],
the set AutpP2

kq Y tσu generates BirpP2
kq when k is algebraically closed. So, φ is trivial.

Moreover, the commutator subgroup D of BirpP2q contains a non-trivial automorphism,
so Lemma 1.1 implies that D “ BirpP2q. □

However, over non-closed fields, we can find non-trivial homomorphisms BirpP2q ÝÑ

Z{2. For instance, the group BirpP2
Rq is generated by AutpP2

Rq » PGL3pRq, the stan-
dard Cremona involution σ : px, yq Þ99K p 1

x
, 1

y
q, the involution at the circle τ : px, yq Þ99K

p x
x2`y2 , y

x2`y2 q and a family of transformations of P2 of degree five, called standard quintic
transformations with six non-real base-points of multiplicity two [2].
Theorem 2.9 ([40]). The commutator subgroup D of BirpP2

Rq is the smallest normal sub-
group of BirpP2

Rq containing AutpP2
Rq and BirpP2

Rq{D »
À

I Z{2, where I is an uncountable
set.

The abelianisation morphism BirpP2
Rq ÝÑ

À

I Z{2 sends AutpP2
Rq and the quadratic

maps σ and τ to zero, while the generators of
À

I Z{2 are images of standard quintic
transformations. There is a geometric intuition for this: there are essentially two types of
pencils of conics in P2

R - one is the pencil of lines through a real point of P2
R, the other

is the pencil of conics through two pairs of non-real conjugate points in P2
R. The maps σ

and τ preserve a pencil of lines through p0 : 0 : 1q. The map τ and the standard quintic
transformations preserve the pencil of conics through p1 :“ p1 : i : 0q, p1 “ p1 : ´i :
0q, p2 :“ p0 : 1 : iq, p2 “ p0 : 1 : ´iq. Let Y5 ÝÑ P2

R be the blow up of p1, p1, p2, p2 in P2
R.

It carries the conic bundle structure Y5 ÝÑ P1
R induced by the pencil of conics through

p1, p1, p2, p2 and it has three singular fibres. The contraction of the strict transform of the
line through p1, p1 yields a morphism Y5 ÝÑ X6 over P1

R to a del Pezzo surface X6 of
degree 6. The conic fibration X6 ÝÑ P1

R is a minimal conic fibration with two singular
fibres. We can view the standard quintic transformations as elementary transformations
of the conic fibration X6 ÝÑ P1

R.
This construction generalises to non-closed perfect fields. Let k be a perfect field and

k its algebraic closure. If X is a surface, then the Galois group Galpk{kq acts on Xk :“
X ˆSpecpkq Specpkq by acting on the second factor. There is a bijection between varieties
over k and k-structures on Xk, and we refer to [5] for precise details. Let p P X be a
closed point. Then pk “ p ˆSpecpkq Specpkq is a finite union of points in Xk and they are
permuted by Galpk{kq. The degree of p is the number of connected components of pk.
Points p1, . . . , pn are in general position if the connected components of pp1qk Y ¨ ¨ ¨ Y ppnqk
are in general position over k.
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If rk : ks ą 2, there may moreover exist pencils of conics through a point p of degree 4
in general position. Let X5 ÝÑ P2

k be the blow up of p. Then the pencil of conics through
p induces a conic bundle structure X5 ÝÑ P1

k which is minimal.
J. Schneider shows that there are no relations between elementary transformations

of X5{P1
k, of X6{P1

k and of Hirzebruch surfaces with a base-point of degreeě 16. They
also show that there are no relations between elementary transformations of distinct
isomorphism classes of fibrations of type X5{P1

k and between elementary transformations
of distinct isomorphism classes of conic fibrations of type X6{P1

k. She uses this to construct
the following quotient of BirpP2

kq.
Let J5 be the set of pencils of conics passing through a point of degree 4 in general

position up to automorphism of P2
k. Let J6 the set of pencils of conics passing through

points of degree 2 in P2
k in general position up to automorphisms of P2

k.
Theorem 2.10 ([36]). Let k be a perfect field such that rk : ks ą 2. Then there exists a
surjective homomorphism

BirpP2
kq ÝÑ

˜

à

I0

Z{2
¸

˚

ˆ

˚
J5

à

I

Z{2
˙

˚

ˆ

˚
J6

à

I

Z{2
˙

where I0 is the infinite set of points in P1
k of degreeě 16 and I is the set of integers n ě 8

such that there exists an irreducible polynomial in krxs of degree 2n ` 1.
The first free factor is generated by images of elementary transformations of Hirzebruch

surfaces, more precisely by the images of fp : px, yq Þ99K pxppyq, yq where p P krys is
irreducible of degreeě 16 and fp is mapped to the element whose non-zero entries are
indexed by the roots of p. The second free factor is generated by images of elementary
transformations of conic bundles of type X5{P1

k. The third free factor is generated by
images of elementary transformations of conic bundles of type X6{P1

k.
The projection onto the first free factor can also be seen as follows: consider the subgroup

BirpP2
kq Ą

"

px, yq Þ99K

ˆ

apyqx ` bpyq

cpyqx ` dpyq
, y

˙

| a, b, c, d P kpyq, ad ´ bc ‰ 0
*

» PGL2pkpyqq

and the homomorphism of groups

φ : PGL2pkpyqq
det

ÝÑ kpyq
˚
{pkpyq

˚
q

2
»

à

P

Z{2 prI0
ÝÑ

à

I0

Z{2

where P is the set of closed points in P1
k and pI0 the projection onto I0. The isomorphism

kpyq˚{pkpyq˚q2 »
À

P Z{2 is given as follows: if kpyq˚ Q f “
ś

f ei
i is the decompsition

into irreducible polynomials fi with ei P Z, then the class rf s of f maps to
ř

divpfiqPP reis. It
turns out that φ is the restriction of the homomorphism in Theorem 2.10 to the subgroup
PGL2pkpyqq.

There is a similar interpretation for the projection onto the sum
À

I Z{2 in the other
free factors by using the group of birational maps of a conic bundle X6{P1

k (resp. X5{P1
k)

preserving the fibration and inducing the identity on the base.
There have not been any results on properties of the kernel of the homomorphisms

Theorem 2.10 up to this moment.
A similar quotient was obtained in [30], where the construction does not focus on conic

fibrations. Consider a point of p degree 8 in P2
k in general position (it always exists [30]).

There is a pencil of cubic curves through p and it has a ninth base-point q, which must
be rational. Let π : X1 ÝÑ P2

k be the blow-up of p. Each smooth cubic in the pencil is
an elliptic curve and we choose q to be zero on each elliptic curve. The map x ÞÑ ´x
on each elliptic curve induces an isomorphism ι of oder two of the surface X1. Another
way to see this, is as follows: the del Pezzo surface X1 embeds as hypersurface of degree
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6 in Pp1, 1, 2, 3q. The projection X1 ÝÑ Pp1, 1, 2q is a double cover of a quadric cone and
ι is its Deck-transofrmation. The birational map β :“ π ˝ ι ˝ π´1 of P2

k is called Bertini
involution.

Theorem 2.11 ([30]). Let k be a perfect field with a Galois extension of degree 8. Then
there exists a surjective morphism BirpP2

kq ÝÑ ˚B Z{2, where the cardinality of B is at
least the cardinality of k. Moreover, this homomorphism has a section.

The free product is generated by images of Bertini involutions and B is the set of Bertini
involutions of P2

k up to conjugation with automorphisms. We do know the kernel of the
above group homomorphism and we give its description at the end of the next section
after a glance at the Sarkisov program.

For some time it was unclear why the quotients we are able to construct are always free
products of sums of Z{2. This was answered when S. Lamy and J. Schneider showed that
for any perfect field k, the group BirpP2

kq is generated by involutions [29]. This is false in
higher dimension [31, 3].

2.2.2. An interlude on the Sarkisov program. Of course, to prove the statement of The-
orem 2.10 it is not enough to play with relations among elementary transformations of
conic fibrations, because BirpP2

kq is not generated by elementary transformations. The
proof uses the so-called Sarkisov program as developped by A. Corti and V. A. Iskovskikh
after an idea of Sarkisov [13, 24]. Sarkisov links are a generalisation of elementary trans-
formations of conic fibrations and are birational maps χ as in Figure 1, where ˚ is a point,

X2

X1 B2

˚

fib
χ´1“blow up

fib

Y

X1 X2

B0

blow up blow up
χ

fib fib

I II

X1

B1 X2

˚

χ“blow-up
fib

fib

X1 X2

B1 B2

˚

»

fib fib

III IV

Figure 1. The four types Sarkisov links in dimension 2.

fib stands a fibration X ÝÑ Bi with connected fibres such that ´KX is relatively ample
and the relative Picard rank is ρpX{Biq “ 1, and all non-horizontal morphisms have rela-
tive Picard rank 1. If Bi is a curve, this means the morphism is a minimal conic fibration.
If Bi “ ˚ is a point, this means that X is a minimal del Pezzo surface. In short, fib stands
for Mori fibre space in dimension 2.

The blow-up of a rational point in P2
k is an example of a Sarkisov link of type I, and its

inverse is an example of a Sarkisov link of type III. The exchange of the two fibrations of
P1

kˆP1
k is an example of a Sarkisov link of type IV. Type II are elementary transformations

between minimal conic bundles if B0 is a curve. A Bertini involution with a base-point of
degree 8 is an example of a link of type II where B0 is a point.
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Theorem 2.12 ([13, 24]). Let k be a perfect field. Any birational map of P2
k is a compo-

sition of Sarkisov links.

Let us illustrate a well-known composition of Sarkisov links over an arbitrary perfect
field k. Consider the involution σ : rx : y : zs Þ99K ryz : xz : xys of P2

k. It has three rational
base-points, namely p1 :“ r1 : 0 : 0s, p2 :“ r0 : 1 : 0s, p3 :“ r0 : 0 : 1s, and contracts the
three lines passing through any two of the three points. We can write σ “ χ4 ˝ ¨ ¨ ¨ ˝ χ1,
with χ1, . . . , χ4 the Sarkisov links in the commutative diagram below, where the blow-ups
are marked with the point that is blown up or strict transform fp of the fibre containing
the point p that is contracted, or the exceptional curve E Ă F1 that is contracted.

Y1 Y2

F1 F0 F1

P2 P1 P2

˚ ˚

p2 fp2 p3 fp3

p1

χ2 χ3

E

χ4

χ1

Let BirMoripP2
kq be the groupoid generated by Sarkisov links between rational surfaces.

By Theorem 2.12, it contains the Cremona group BirpP2
kq. It has a nice presentation in

terms of generators and generating relations [30] and the generating relations are called
elementary relations. We will not go further into this, but in [29], S. Lamy and J. Schneider
list all elementary relations of Sarkisov links between rational surfaces over a perfect field.

A core idea for the homomorphism in Theorem 2.10 is the following: let CBpP2
kq be

the set of classes of rational minimal conic fibrations up to birational maps preserving
the conic bundle structure. Let X ÝÑ P1

k be a rational minimal conic fibration in the
class C P CBpP2

kq. Two elementary transformations χ, χ1 : X 99K X 1 over P1
k (i.e. Sarkisov

links of type II over B “ P1
k) are equivalent if their base-points have the same degree. We

denote by MpCq the equivalence class of elementary transformations of the class C. Using
the list of elementary relations between Sarkisov links, J. Schneider proves the following:

Theorem 2.13 ([36]). Let k be a perfect field. There is a homomorphism of groupoids
BirMoripP2

kq ÝÑ ˚
CPCBpP2

kq

p
à

χPMpCq

Z{2q

that sends each Sarkisov link of type II between conic fibrations with base-point of degreeě

16 onto the generator indexed by its equivalence class, and all other Sarkisov links and all
automorphisms onto zero.

Then they compose the homomorphism of groupoids with the projection onto the free
factors from Theorem 2.10 and show that this composition is surjective.

The same approach is taken in [30], where it is shown that BirpP2
kq » G ˚ p˚B Z{2q,

where G Ă BirpP2
kq is the subgroup generated by AutpP2

kq and compositions P2 99K P2

of Sarkisov links that are not Bertini involutions with a base-point of degree 8. The
homomorphism in Theorem 2.11 is the projection forgetting G.

3. Normal subgroups in dimension ě 3

In this section, we look at construction of normal subgroups of BirpPn
kq for n ě 3. The

strategy is to construct a non-trivial morphism of groups BirpPn
kq ÝÑ G for some group

G whose kernel is non-trivial. The sections are ordered by G “ Z{2, G “ Z and G “ Z{3
and G “ FpCq.

3.1. Quotients of Cremona groups via conic bundles. The concept of Sarkisov links
generalises to higher dimension. We state the following theorem without going into the
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generalisation Sarkisov links to higher dimension. Definitions can be found in [1, 22].
Theorem 2.12 generalises to higher dimension as well:

Theorem 3.1 ([22]). Let k be an algebraically closed field of characteristic zero and let
n ě 3. Then any birational map of Pn

k is a composition of Sarkisov links.

Let BirMoripPn
kq be the groupoid generated by Sarkisov links between rational n-folds.

It contains BirpPn
kq by the above theorem. [1] gives a presentation in terms of generators

and generating relations for BirMoripPn
kq called; generating relations are called elementary

relations and they list the ones including a Sarksiov link between conic fibrations. We have
the following analogon of Theorem 2.13. The gonality of a curve C is the minimal degree
of a dominant morphism C ÝÑ P1

k. The covering gonality d of a variety Γ is the minimal
positive constant such that through any general point of Γ passes a curve in Γ of gonality
d.

Theorem 3.2 ([1]). Let k Ă C be a subfield. For each n ě 3 there exists a constant
dn ą 0 and a homomorphism of groupoids

BirMoripPn
kq ÝÑ ˚

CPCBpPn
kq

p
à

χPMpCq

Z{2q

that sends each Sarkisov link of type II between conic fibrations with base-locus of covering
gonality ě dn over C onto the generator indexed by its equivalence class, and all other
Sarkisov links and all automorphisms onto zero.

Projecting on the equivalence class of the conic bundle Pn´1
k ˆ P1

k ÝÑ Pn´1
k yields an

analogon of Theorem 2.10 in higher dimension, which shows that all Cremona groups in
higher dimension are not simple.

Theorem 3.3 ([1]). Let n ě 3 and let k Ă C be a subfield. There is a surjective homo-
morphism of groups

BirpPn
kq ÝÑ

à

I

Z{2,

where the indexing set I has the same cardinality as k and it restriction to the subgroup
of birational dilatations px1, . . . , xnq Þ99K px1αpx2, . . . , xnq, x2, . . . , xnq is surjective. In par-
ticular, BirpPn

kq is not simple for n ě 3.

The geometric meaning of the homomorphism is again as follows: consider the subgroup

BirpPn
kq Ą

"

px, yq Þ99K

ˆ

apyqx ` bpyq

cpyqx ` dpyq
, y

˙

| a, b, c, d P kpyq, ad ´ bc ‰ 0
*

» PGL2pkpyqq,

where y “ py2, . . . , ynq, and the homomorphism of groups

φ : PGL2pkpyqq
det

ÝÑ kpyq
˚
{pkpyq

˚
q

2
»

à

P

Z{2 prI
ÝÑ

à

I

Z{2

where P is the set of prime divisors in Pn´1
k and the isomorphism kpyq˚{pkpyq˚q2 »

À

P Z{2
is given as in the previous section. Here, the subset I Ă P is the set of prime divisors
whose support has gonalityě dn. The constant dn is coming from the boundedness of
Fano varieties proven by C. Birkar, but we will not go into it here. The above theorem
generalises to decomposable embedded conic bundles [1].

If k is of characteristic zero, there are many non-equivalent conic bundle structures
on birational models of Pn

k, at least as many as the cardinality of k, and the elementary
transformations of non-equivalent conic bundle structures do not commute as long as their
base-locus have covering gonality large enough [1]. This yields the following result.
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Theorem 3.4 ([1]). Let n ě 3 and let k Ă C be a subfield. There is a surjective homo-
morphism

BirpPn
kq ÝÑ ˚

J
Z{2,

where J is as large as k. In particular, every group generated by a set of involutions of
cardinality at most k is a quotient of BirpPn

kq. Moreover, the above quotient admits a
section, so BirpPn

kq is a semidirect product with one factor a free product.

In [1] it is also shown that BirpPn
kq, n ě 3, carries the structure of an amalgamated

product (with many factors) along the pairwise intersections of the factors. On the other
hand, BirpP2

Cq is not a non-trivial amalgamated product of two factors [11, Appendix by I.
Cornulier], whereas BirpP2

Rq has the structure of an amalgamated product of two factors,
amalgamated along their intersection [41].

There are constructions of similar homomorphism in [4] that generalise the construction
from [30] with generalised Bertini involutions of del Pezzo fibrations above a curve; a del
Pezzo fibration π : X ÝÑ B over a curve B is a surjective morphism with connected fibres,
X and B are normal, the relative Picard rank is ρpX{Bq “ 1 and the general fibre is a
del Pezzo surface. In Theorem 3.5 the authors concentrate on the case where the general
fibre is a cubic surface.
Theorem 3.5 ([4]). For each complex del Pezzo fibration π : X ÝÑ B over a curve B
with general fibre a del Pezzo surface of degree 3, there is a group homomorphism

BirpXq ÝÑ ˚
N
Z{2

whose restriction to the subgroup tf P BirpXq | π ˝ f “ πu is surjective.

The homomorphism in Theorem 3.5 sends Bertini involutions whose base-locus has
large gonality onto generators of the free product. [4] also shows following result that is
orthogonal to many of the above constructions:
Theorem 3.6 ([4]). There is surjective homomorphism of groups ρ : BirpP3

Cq ÝÑ ˚N Z{2
with the following property: denoting by G Ă BirpP3

Cq the subgroup generated by all bira-
tional maps f P BirpP3

Cq such that π ˝ f “ π for some rational fibration π : P3
C 99K P2

C (a
rational map whose general fibre is rational), we have AutpP3

Cq Ĺ G Ĺ kerpρq.

In particular, the above constructions do not exhaust constructions for quotients of
Cremona groups in higher dimension.

In [39], S. Zikas generalises the construction from [30] (see Theorem 2.11) with gener-
alised Bertini involutions of Fano threefolds.
Theorem 3.7 ([39]). The Cremona group BirpP3

Cq can be written as the free product
BirpP3

Cq » G ˚ p˚J Z{2q, where J is uncountable and where the generators of Z{2 are
generalised Bertini involutions of P3

C.

An interesting consequence of Theorem 3.7 is that there exist uncountably many auto-
morphism of the group BirpP3

Cq of arbitrary order which are not a composition by inner
and field automorphisms [39]. To compare, any automorphism of BirpP2

Cq is inner, up to
a field automorphism [17].

3.2. Quotients of Cremona groups using Motivic invariants. Let us introduce a
third type of construction of normal subgroups of Cremona groups from [31] using motivic
invariants. In principal, the idea is also to construct a surjective non-trivial homomorphism
BirpPnq ÝÑ G to a group G such that the kernel is non-trivial. However, the construction
does not use the Sarkisov program nor geometric group theory, and the group G is a free
abelian group.
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Let k be a field and let Birn {k denote the set of equivalence classes of n-dimensional k-
varieties up to birational maps. Let’s consider the two-dimensional case. Let k be a perfect
field. Then any birational map f of a smooth projective surface X has a decomposition

X

X X

π η

f

where η and π are sequences of blow-ups of closed points. We define

ϕpfq :“
n

ÿ

i“1
rpis ´

n
ÿ

i“1
rqis P ZrBir0 {ks

where the pi (resp. qi) are blown up by η (resp. π) and rpis, rqis are respectively their
classes in Bir0. Note that we can replace the classes of the points by the classes of the
exceptional divisors and that we could also define

ϕpfq :“
n

ÿ

i“1
rEis ´

n
ÿ

i“1
rFis P ZrBir1 {ks

where Ei (resp. Fi) are the curves contracted by η (resp. πq and rEis, rFis are their classes
in Bir1.

Now, let n ě 3 and let f : X 99K Y be a birational map between n-dimensional varieties.
There exists a resolution

W

X Y

π η

f

where π and η are birational morphisms. Define

ϕpfq :“
n

ÿ

i“1
rEis ´

n
ÿ

i“1
rFis P ZrBirn´1 {ks

where Ei Ă X (resp. Fi Ă X) are the n ´ 1 dimensional hypersurfaces contracted by π
(resp. η).

Theorem 3.8 ([31] for n ě 3 and [32] for n “ 2).
(1) Let k be a perfect field. Then the map ϕ : BirpP2

kq ÝÑ ZrBir0 {ks is a group homo-
morphism.

(2) Let k be a field and n ě 3 and X any n-dimensional variety. Then the map
ϕ : BirpXq ÝÑ ZrBirn´1 {ks is a group homomorphism.

Note that in order to make ϕ a homomorphism, it is necessary to consider the birational
classes of the base-loci and not the isomorphism classes (for points, this is the same).
Indeed, if f and g are two birational maps of X, n ě 3, then g´1 may restrict to a
birational map (not necessarily an isomorphism) on the base-loci of f .

In [32] the authors show that in fact ϕ is the trivial group homomorphism. More pre-
cisely, they show that up to order, η and π blow-up isomorphic points. However, in
dimensioně 3, the situation is quite different. H.-Y. Lin and E. Shinder show the fol-
lowing statement:

Theorem 3.9 ([31]). The homomorphism ϕ : BirpPn
kq ÝÑ ZrBirn´1 {ks is non-trivial in

the following cases:
(1) if k is a number field or is a function field over an algebraically closed field, over

a finite field or over a number field and n ě 3,
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(2) if k Ă C and n ě 4,
(3) if k is infinite and n ě 5.

In particular, in these cases, BirpPn
kq is not generated by involutions.

In particular, dimension n “ 2 is the sporadic case when BirpP2
kq is generated by

involutions, if k is perfect [29].
Once the statement holds in dimension n0 and there is a birational map f of Pn0 such

that ϕpfq is non-zero, we consider the birational map f ˆ idPm
k

of Pn0 ˆ Pm
k to prove the

statement in dimension ą n0. So in each case, it suffices to show the claim in the case of
the smallest dimension.

To show (2) they use the following example by K.-W. Lai and B. Hasset in [26]: there
is a birational map f : P4 99K P4 such that the base-locus of f is a K3 surface and the
base-locus of f´1 is a K3 surface, but the two K3 surfaces are not birational. For (1)
they use a similar type of example where the role of K3 surfaces is replaced by curves;
these examples appear in the classification of Fano threefolds of rank two by Mori-Mukai
[35, 2) on page 111]. For (3) they use a similar type of example of a birational map of
five-dimensional G2-Grassmannians by A. Ito, M. Miura, S. Okawa, K. Ueda in [25].

While we do not fully understand the kernel of the homomorphism ϕ : BirpXq ÝÑ

ZrBirn´1 {ks, there is a beautiful description of the kernel of a group homomorphism that
is generated by the images of ϕ.

Let k be of characteristic zero and let Varďm
{k be the set of isomorphism classes

of k-varieties of dimensionď n and K0pVarďm
{kq the trunctuated Grothendieck ring of

varieties of dimensionď m; it is the group generated by isomorphism classes rY s of varieties
of dimensionď n ´ 1 and the relations are generated by the cut-and-paste relations rY s “

rU s ` rZs for every open set U Ă Y and Y zU “ Z.
There is an exact sequence

Varďm´1
{k ιm´1

ÝÑ Varďm
{k πm

ÝÑ ZrBirm {ks

where πmpY q “ 0 if dim Y ď m ´ 1 and πmpY q “ rY1s ` ¨ ¨ ¨ ` rYrs if dim Y “ m and
Y1, . . . , Yr are the irreducible components of Y of dimension m.

If X is an algebraic variety of dimension n, then the group homomorphism ϕ : BirpXq ÝÑ

ZrBirn´1 {ks induces a unique group homomorphism
ϕ̃ : BirpXq ÝÑ K0pVarďn´1

{kq,

such that if ι : U ÝÑ Y is the inclusion of an open set, then ϕ̃pιq “ rY zU s and such that
πn´1 ˝ ϕ̃ “ ϕ.

Proposition 3.10 ([31]). We have kerpιn´1q “
ř

XPBirn {k ϕ̃pBirpXqq.

We invite the reader to discover more details in [31].

3.3. Quotients of Cremona groups using Severi-Brauer surfaces. Let k be a field
and k its algebraic closure. Châtelet’s theorem says that a variety S such that Sk » Pn

k
has a k-rational point if and only if S » Pn

k. Such a variety S is called Severi-Brauer
variety and it is called non-trivial Severi-Brauer variety if Spkq “ ∅.

Let us look at a quotient construction for BirpSq, when S is a non-trivial Brauer-Severi
surface, and an application to Cremona groups in higher dimension. We work over a
perfect field.

A classical result says that a point p of a non-trivial Severi-Brauer surface S has degree
rkppq : ks “ 3e ě 3, where kppq is the residue field of p. The only Sarkisov links starting
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from S are links of type II whose base-points are of degree 3 or 6
Y

S Sop

blow-up point p of degree d blow-up point p1 of degree d

χd,d

where the surface Y in the diagram is a del Pezzo surface, d P t3, 6u and kppq » kpp1q. The
surface Sop is also a non-trivial Severi-Brauer surface that is called opposite of S and may
or may not be isomorphic to S. It turns out that any point of degree 3 in S is in general
position and links χ3,3 as above always exist. However, there are non-trivial Severi-Brauer
surfaces with no points of degree 6 in general position [3]. Let P3 (resp. P6) be the set
of points of degree 3 (resp. 6) in S up to AutpSq. Looking at relations between Sarkisov
links, J. Blanc, J. Schneider and E. Yasinsky prove the following.

Theorem 3.11 ([3]). Let k be a perfect field and S a non-trivial Severi-Brauer surface.
Then |P3| ě 2 and for each point p P P3 there exists a surjective homomorphism of groups

BirpSq ÝÑ
à

P3ztpu

Z{3 ˚

ˆ

˚
P6
Z

˙

In particular, BirpSq is not simple. Moreover, if P6 ‰ ∅, then BirpSq is not generated by
elements of finite order.

The homomorphism is constructed analogously to the constructions of quotients to
finite groups in Section 2.2; they first construct a homomorphism

BirMoripSq ÝÑ
à

E3ztpu

Z{3 ˚

ˆ

˚
E6
Z

˙

,

where E3 and E6 are equivalence classes of Sarkisov links χ3,3 and χ6,6, respectively. Then
they show that after composing with a certain projection, the restriction to BirpSq becomes
surjective.

Now, let’s look at their application for Cremona groups in higher dimension. For i “ 1, 2,
consider a morphisms Xi ÝÑ B between complex varieties with dim B ě 2 such that Xi

has nice singularities and such that the generic fibre Si “ pXiqCpBq is a Severi Brauer
surface. Notice that the condition dim B ě 2 is important, because if dim B “ 1, then
CpBq is a C1-field, so by Tsen theorem there is a section and hence Si » P2

CpBq. So we
have dim Xi ě 4. A Sarkisov link χ of type II starting from X1 is a directed diagram of
the form

Y1 Y2

X1 X2

B

χ

where Xi ÝÑ Yi are divisorial contractions and the dotted arrow is an isomorphism in
codimension 1 (see Section 2.2.2). Then χ induces a birational map S1 99K S2 between
the generic fibres [3]. It may be a Sarkisov link and in that case the base-locus of χ is a
curve that intersects a general fibre in d P t3, 6u points in general position. With this, J.
Blanc, J. Schneider and E. Yasinsky show the following theorem.

Theorem 3.12 ([3]).
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(1) If X ÝÑ B is a morphism with dim B ě 2 and XCpBq a nontrivial Severi-Brauer
surface. Then there is a surjective group homomorphism

BirMoripXq ÝÑ
à

M3

Z{3 ˚

ˆ

˚
M6

Z
˙

where Md, d P t3, 6u, is a set of particular Sarkisov links.
(2) For each m ě 4 there exists an example of such a fibration X ÝÑ B such that X

is rational of dimension m and where the cardinality of M6 is the cardinality of C.
(3) In particular, if m ě 4, there is a surjective homomorphism BirpPn

Cq ÝÑ FpCq to
the free group FpCq over the set C, and so BirpPm

C q is not generated by involutions.

As a corollary, they show that for any complex algebraic variety of dimensioně 4 there
is a surjective homomorphism BirpPm

C q ÝÑ BirpXq [3].

3.4. A dream. We know very little about the kernels of the above group homomorphisms.
Birational geometry in dimensioně 3 is even harder than it is for threefolds and therefore,
we need to view these constructions of homomorphisms as sporadic opportunities that
arise because we manage to study some n-folds rather better than others. It would be
fantastic to be able to expand these constructions in a way that is not restrained by our
knowledge of only certain types of n-folds.
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