
Habilitation à Diriger des Recherches

Université d’Angers

préparée à l’Unité Mixte de Recherche 6093 CNRS,
Laboratoire angevin de recherche en mathématiques

par Susanna Maria ZIMMERMANN

Homomorphisms from and of
Cremona groups

Habilitation soutenue le 8 septembre 2021
devant un jury composé de

Damien Calaque (Examinateur)
Serge Cantat (Rapporteur)
Paolo Cascini (Rapporteur)
Ilia Itenberg (Examinateur)
Rahul Pandharipande (Examinateur)
Stefan Schröer (Examinateur)
Claire Voisin (Rapporteur)





Contents

CV i

I Introduction 1

II Sarkisov links and relations 6
II.1 Rank r fibrations and Sarkisov links . . . . . . . . . . . . . . . . . . . . . . 6
II.2 Why elementary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
II.3 Elementary relations in dimension 2 . . . . . . . . . . . . . . . . . . . . . . 17
II.4 Elementary relations in dimension ě 3 . . . . . . . . . . . . . . . . . . . . 19

IIIHomomorphisms 24
III.1 From the plane Cremona group . . . . . . . . . . . . . . . . . . . . . . . . 24
III.2 From Cremona groups in dimensioně 3 . . . . . . . . . . . . . . . . . . . . 28
III.3 Automorphisms of Cremona groups . . . . . . . . . . . . . . . . . . . . . . 30

IV Structures of Cremona groups 33
IV.1 Plane Cremona group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
IV.2 Cremona groups in higher dimension . . . . . . . . . . . . . . . . . . . . . 36

V Algebraic subgroups 37
V.1 Birational group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
V.2 The relatively minimal surfaces . . . . . . . . . . . . . . . . . . . . . . . . 39
V.3 The classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A Elementary relations 46
A.1 Above a curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.2 Dominated by a del Pezzo surface . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 64





CV
Academic Career

2017– Maître de Conférence, Université d’Angers
2016–17 Postdoc with Prof. S. Lamy, Université de Toulouse III Paul Sabatier; funded

by Swiss National Science Foundation
2013–16 PhD candidate supervised by Prof. J. Blanc, Dept. Mathematics and Computer

Science, University of Basel.
Defended on 8.9.2016 with summa cum laude. Jury: Prof. J. Blanc, Prof. I.
Dolgachev, Prof. Y. Prokhorov.

Publications:
1. J. Schneider, S. Zimmermann: Algebraic subgroups of the plane Cremona group

over a perfect field. EpiGA (to appear)
2. S. Zimmermann: The real plane Cremona group is a non-trivial amalgam. Annales

de l’Institut Fourier (to appear)
3. C. Urech, S. Zimmermann: Continuous automorphisms of Cremona groups. IJM,

vol. 32, 2021.
4. J. Blanc, S. Lamy, S. Zimmermann: Quotients of higher dimensional Cremona

groups. Acta Math. Vol 226, no.2 (2021), 211–318.
5. S. Lamy, S. Zimmermann: Signature morphisms from the Cremona group over a

non-closed field. J. Eur. Math. Soc. 22 (2020), 3133–3173.
6. C. Urech, S. Zimmermann: A new presentation of the plane Cremona group. Proc.

of the AMS, vol 147, no. 7, 2019, 2741–2755.
7. T. Ducat, I. Hedén, S. Zimmermann: The decomposition groups of plane conics

and plane rational cubics. Math. Res. Lett., 26(1) (2019), 35–52.
8. M.F. Robayo, S. Zimmermann: Infinite algebraic subgroups of the real Cremona

group. Osaka J. of Math., vol.55, no.4 (2018), 681–712.
9. J. Blanc, S. Zimmermann: Topological simplicity of the Cremona groups. Amer. J.

Math. 140 (2018), no. 5, 1297–1309.
10. S. Zimmermann: The Abelianisation of the real Cremona group. Duke Math. J. vol.

167, no.2 (2018), 211–267.
11. I. Hedén, S. Zimmermann: The Decomposition group of a line. Proc. Amer. Math.

Soc. 145 (2017), no. 9, 3665–3680.
12. S. Zimmermann: The Cremona group is compactly presented. J. of the London Math.

Soc., 93, no.1 (2016), 25–46.

Preprints:
1. H.-Y. Lin, E.Shinder, S. Zimmermann: Factorisation centers in dimension two

and the Groethendieck ring of varieties. arXiv:2012.04806, submitted
2. H. Kraft, A. Regeta, S. Zimmermann: Small G-varieties. arXiv:2009.05559, sub-

mitted

i



3. S. Asgarli, K.-W. Lai, M. Nakahara, S. Zimmermann: Biregular Cremona
transformations of the plane. arXiv:1910.05302, submitted

Prices
2020 Médaille Bronze 2020 du CNRS

Fundings
1.2020–12.2021 Région Pays de la Loire Projet Etoiles montantes, 110 900e

9.2019–2.2020 Université d’Angers Sabatical (CRCT)

2019 CNRS projet PEPS 2019

2018–22 ANR Projet "jcjc" FIBALGA

2018 CNRS projet PEPS 2018 with E. Floris (Univ. de Poitiers)
and R. Terpereau (Univ. de Bourgogne)

2016–17 Swiss National Science Early.Postdoc-Mobility grant
Foundation No. P2BSP2_168743

Academic responsabilities
2021 Member of recrutement jury for Maitre de Conférence position at Univ. d’Angers,

Univ. Bretagne-Sud, Univ. de Lille
2020 Member of recrutement jury for Maitre de Conférence position at Univ. de Bordeaux,

Univ. de Lorraine
2019 Member of recrutement jury for Maitre de Conférence position at Univ. de Nice
2018– INSMI parity referent at LAREMA
2017 Member of thesis defence jury of Clément Fromenteau, Université d’Angers

Member of thesis defence jury of Anne Lonjou, Université de Toulouse
2017– Organisor of the Seminar Géométrie Algébrique, Angers

Supervision of students
• Master M2 projects: Aurore Boitrel (Univ. Rennes, 2021), Brandon Vizioli-Marion

(Unv. Nantes, 2021), Thibault Chailleux (Univ. Nantes, 2020)
• Master M1 projects: Arthur Froger, Julien Tesson (Univ. Angers, 2021), Amélie

Petiteau (Univ. Angers, 2019)
• Bachelor projects (Licence 3): 26 students between 2019–2021 (Univ. Angers)

Organisation of scientific events
24.–26.11.2021 Journées GDR GACG in Angers

14.–18.6.2021 Conference Algebraic Geometry Angers, with E. Floris (Univ. Poitiers)

31.5.–2.6.2021 Lectures Sophie Kowalevski (école niveau M1), avec N. Raymond (Univ.
Angers)

2018–21 7th–10th swiss-french workshop in Algebraic Geometry, Charmey (Switzer-
land), with R. Terpereau (Univ. de Bourgogne) and Prof. P. Habgegger
(Univ. of Basel)

ii



20.–21.5.2019 FIBALGA à Angers, with Ronan Terpereau (Université de Bourgogne)

3.–4.12.2018 Journée réelle du CHL, Angers

5.–6.6.2018 Rencontre Angers–Poitiers en Géométrie Algébrique, Université d’Angers,
with E. Floris (Univ. de Poitiers)

9.–13.1.2017 6th swiss-french workshop in Algebraic Geometry, Charmey (Switzerland),
with Prof. J. Blanc (University of Basel), A. Dubouloz (Univ. de Bour-
gogne) and Prof. P. Habgegger (Univ. of Basel)

5.–16.9.2016 Cremona conference Basel 2016, with Prof. J. Blanc, M. Hemmig, C. Urech
(Univ. of Basel)

Popularisation of mathematics
2021 Ambassador of Pays de la Loire for the Fête de la Science
2020 Organisation of the mathematical exposition at Nuit Européenne des Chercheur.e.s

in Angers
2015 Organisation of the Mathematics exposition at Basler Uninacht 2015, with

Linda Frey, Olivia Ebneter
2010–15 Teaching Studienwoche kids@science (by Stiftung Schweizer Jugend forscht)

2012 Organisation of the exposition of the Mathematical Institute at TunBasel
with Oliver De Capitani, Sabine Schädelin, Nadine Scossa

iii



I Introduction
The Cremona group is the group BirpPnkq of birational self-maps of the projective space
Pnk over some field k. It is named after Luigi Cremona and his works [Cre63, Cre65]. In
projective coordinates, the elements of BirpPnkq are of the form

rx0 : ¨ ¨ ¨ : xns 99K rf0px0, . . . , xnq : ¨ ¨ ¨ : fnpx0, . . . , xnqs,

where f0, . . . , fn P krx0, . . . , xns are non-constant homogeneous polynomials of equal de-
gree. If the fi have no common divisors, the transformation contracts the set of hyper-
surfaces defined by detp Bfi

Bxj
q “ 0, and it is not defined at the points f0 “ ¨ ¨ ¨ “ fn “ 0.

The transformation is given by the linear system generated by the fi, and we can define
its degree to be degpfiq. In affine coordinates the transformations are given by quotients
of polynomials

px1, . . . , xnq 99K

ˆ

p1px1, . . . , xnq

q1px1, . . . , xnq
, . . . ,

pnpx1, . . . , xnq

qnpx1, . . . , xnq

˙

where p1, . . . , pn, q1, . . . , qn P krx1, . . . , xns, q1, . . . , qn ‰ 0. We have BirpP1
kq » AutpP1

kq,
but if n ě 2 the group BirpPnq is very large and contains the group of polynomial auto-
morphisms of the affine space of dimension n.

Cremona groups have been studied throughout the last 160 years. By Zariski’s theorem,
we know that any birational map between smooth projective surfaces defined over an
algebraically closed field contracts only rational curves. This is reflected in the Noether-
Castelnuovo theorem [Cas01, Ale16, Giz82] (re-proven by J.W. Alexander and M.
Gizatullin). It states that if k is algebraically closed, then BirpP2

kq is generated by
AutpP2

kq and the quadratic involution rx : y : zs ÞÑ ryz : xz : xys, which contracts three
lines. Over a non-closed field and in higher dimension, birational maps may contract
non-rational curves. Indeed, for each irreducible polynomial p P krys the birational map
fp : px, yq ÞÑ pxppyq, yq contracts a curve birational to ΓˆP1 onto t0uˆΓ, where Γ Ă P1 is
the closed point given by p “ 0. Similarly, for n ě 3 and for any irreducible polynomial p P
krx2, . . . , xns, the birational map px1, . . . , xnq Þ99K px1ppx2, . . . , xnq, x2, . . . , xnq contracts
a hypersurface birational to Γ ˆ P1 onto t0u ˆ Γ, where Γ Ă Pn´2 is the irreducible
hypersurface given by p “ 0. A classical result due to H. Hudson and I. Pan [Hud27,
Pan99] states that BirpPnkq, n ě 3 is not generated by AutpPnkq and any set of elements of
BirpPnkq of bounded degree. The argument is precisely on the above examples: we need at
least as many generators as birational classes of hypersurfaces of Pn´2. The same statement
holds for n “ 2 over non-closed fields. I.V. Iskovkikh produced in [Isk91] a generating
set of BirpP2

kq over a perfect field k that is very large (it contains all of the above maps)
but still quite reasonable. However, in higher dimension, no reasonable generating set of
the Cremona group is known up to date. Birational Geometry in dimension n ě 3 is much
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CHAPTER I. INTRODUCTION

more involved than it is for surfaces, and many properties of plane Cremona group are
only understood for special families of birational maps of Pn.

The generating set of BirpP2
kq produced in [Isk91] makes use of the so-called Sark-

isov program, established by A. Corti in [Cor95] after an unpublished suggestion by
Sarkisov in [Sar89] and M. Reid in [Rei91]. (Well, to be precise, [Isk91] does not really
use it, but all the ideas of the Sarkisov program are already well visible.) The Sarkisov
program in dimension 2 provides a way to decompose any birational map between min-
imal geometrically rational surfaces over a perfect field into isomorphisms and special
types of birational maps called Sarkisov links, which are well understood for surfaces.
I.V. Iskovkikh classified all Sarkisov links between surfaces in [Isk96], and also de-
scribed relations between them. [Cor95] generalises the Sarkisov program for birational
maps between complex threefolds that are Mori fibre spaces (projective spaces are Mori
fibre spaces). The algorithm is quite involved and it seems unfeasible to generalise it to
dimensioně 4.

Mori fibre spaces are outputs of the Minimal Model program (MMP). The two-rays
game is a step in the MMP where only two extremal contractions are possible; if they lead
to Mori fibre spaces, the induced birational map between the two Mori fibre spaces is a
Sarkisov link. In [BCHM10], termination of the MMP in higher dimension is established in
a general setting (for klt pairs). Based on the same ideas, C.D. Hacon and J. McKernan
showed in [HM13], that any birational map between Mori fibre spaces can be decomposed
into Sarkisov links. The proof does not suggest any algorithm, so the Sarkisov program
in higher dimension is not really a program, but I will use the term anyway.

A question that goes back to Enriques is whether the Cremona groups are simple.
S. Cantat and S. Lamy showed in [CL13] that BirpP2

Cq is not simple and A. Lonjou
generalised this to BirpP2

kq over an arbitrary field k in [Lon16]. To do this, they show that
the Cremona group acts by isometries on an infinite-dimensional hyperbolic space, and
use small-cancellation to produce normal subgroups. Unfortunately, it is not clear how to
generalise the construction of this infinite-dimensional hyperbolic space in dimensioně 3.
Finding a non-trivial homomorphism of groups starting from BirpPnq from scratch is not
straightforward at all. In the collaboration [LSZ20] with H.-Y. Lin and E. Shinder we
show that the most intuitive homomorphism starting from BirpP2

kq, given by factorisation
centers over a non-closed perfect field k (see definition in §III.1.3), is trivial, and that it
is, surprisingly, not evident. In the collaboration [BLZ21] with J. Blanc and S. Lamy,
we use the Sarkisov program established in [HM13] to show that the Cremona groups
in higher dimension are not simple as well, and we extend this result to large families
of varieties with a P1-fibration. More precisely, for any Mori fibre space X of dimension
n ě 3, we construct a homomorphism of groups BirpXq ÝÑ ˚I ‘JZ{2, where I, J are
certain index sets, and show that it is non-trivial forX “ P1ˆPn´1 and some large families
of varieties X with a P1-fibration, making its kernel a non-trivial strict normal subgroup
of BirpXq. Similar homomorphisms are also constructed in [BY20, LZ20, Sch19, Zim18a].

On can also consider group homomorphisms from BirpXq to itself, and in particular
group automorphisms of BirpXq. For X “ P2

C, they are all of the form g ÞÑ fgαf´1,
where f P BirpP2

Cq and α is a field homomorphism of C acting on the coefficients of the
coordinates of g [Dés06b]. In [UZ21] we generalise this result to automorphisms of BirpPnkq
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CHAPTER I. INTRODUCTION

that are homeomorphisms with respect to the Zariski topology, and where k is a field of
characteristic zero, and obtain a similar result for AutpAn

kq, if k is infinite and perfect
(but not necessarily of characteristic zero).

The Sarkisov program can be interesting for the classification of Mori fibre spaces
up to birational maps. For instance, given a Mori fibre space X with certain properties,
one can attempt to show that there is no Sarkisov link starting from X preserving that
property. The property can be the action of an algebraic group G, and the Sarkisov links
is then asked to be G-equivariant, and such a Mori fibre space X is called G-birationally
superrigid. This concept is used to study algebraic groups actions by birational trans-
formations on a variety X up to conjugacy. If G is finite, this is very hard, already for
surfaces. Over an algebraically closed field, the classification of finite subgroups of BirpP2

kq

was achieved by I.V. Iskovskikh and I. Dolgachev, and by J.Blanc, culminating
in [BB04, Bla09a, DI09b]. Over non-closed fields, only partial classifications of finite sub-
groups of BirpP2

kq exist [DI09a, Rob16, Yas16, Tsy13]. In dimension 2, (not necessarily
finite) algebraic subgroups acting birationally on P2 have been classified up to conju-
gation and inclusion in [Bla09b] over an algebraically closed field. [Fon20] studies the
connected automorphism groups of surfaces X in dimension 2, and shows that are not
always contained in a maximal algebraic group acting birationally on X. In [SZ21], in
collaboration with J. Schneider, we classify the infinite algebraic groups acting on P2

k

over an arbitrary perfect field up to inclusion and conjugacy. It is a generalisation of
the classification obtained in [RZ18] over R. Mori fibre spaces are quite well understood
in dimension 3, 4, because a general fibre of a Mori fibre space X{B is a Fano variety
of dimension d “ dimX ´ dimB, and they are classical objects for d “ 2 and classi-
fied in dimension d “ 3 in the smooth case. This is one of the reasons why there are
also some very nice partial classifications of finite groups acting birationally on three-
folds, see [BCDP18, CS19, Pro11, Pro12, Pro15, PS20] for a small selection of results.
Connected algebraic groups acting on P3 have been classified up to conjugacy and inclu-
sion [Ume80, Ume82a, Ume82b, Ume85], and the classification is partially reproven in
[BFT17, BFT19]. In dimension n ě 4, an attack has been started in [BF20].

Even though the Sarkisov program has been established in higher dimension, the
Sarkisov links themselves are not well understood. Given an explicit Mori fibre space
X{B, it is in general hard to compute which Sarkisov links start from X. This is much
easier in dimension 2 over a perfect field, where Mori fibre spaces are well understood and
where we have a complete description of Sarkisov links [Cor95, Isk96], that is, there is an
explicit list of Sarkisov links between geometrically rational Mori fibre spaces of dimension
2 together with the induced linear system of curves. In [BLZ21], we describe completely
a certain type of Sarkisov link between Mori fibre spaces whose general fibre is a curve.
For threefolds there are descriptions of certain Sarkisov links [BY20, BFT17, BFT19], but
in general we do not have any general description, up to date. If the general fibre of the
Mori fibre space X is a Fano variety of dimension d ě 3, the description of any Sarkisov
link starting from X may need good understanding of Fano varieties in dimension d.

This is a synthesis of my collaborations [BLZ21, LZ20, LSZ20, SZ21, UZ21, Zim18b] on
properties of the Cremona group in dimension 2 over a perfect field and in dimensioně 3

over C.
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CHAPTER I. INTRODUCTION

Organisation of the habilitation

In §II.1–II.2, I will explain that in dimension n ě 2 any relation between Sarkisov links
is obtained by conjugating and composing so-called elementary relations. This is a result
from [BLZ21] over C in dimension ě 3 and from [LZ20] over a perfect field k in dimension
2.

In §II.2–II.4 I give the description of elementary relations among Sarkisov links ob-
tained in [Sch19] (dimension 2 over a perfect field) and [BLZ21] (dimensioně 3 over C)
that include a special type of Sarkisov link preserving a P1-fibration. I also give the de-
scription of the elementary links in [LZ20] including a Bertini link (only trivial relations)
and the elementary relations preserving a fibration of del Pezzo surfaces over a curve
described in [BY20].

In §III.1–§III.2, I describe for some special families of varieties X the surjective homo-
morphism of groups BirpXq ÝÑ ˚I

À

J Z{2 constructed in [BLZ21, BY20, LZ20, Sch19].
In fact, all of them are obtained as follows: the description of the elementary relations
from §II.2–II.4 give rise to a homomorphism of groupoids BirMoripXq ÝÑ ˚I 1 ‘J 1Z{2,
which we then restrict and cut off factors in the target group. In §III.1.3, we also explain
the result of [LSZ20], which states that for a smooth projective surface over a perfect field,
the homomorphism from BirpXq ÝÑ ZrVar0

{ks given by factorisation centers is trivial.

In §III.3 we switch to considering homomorphism of groups from the Cremona group
to itself. The Cremona groups carry a natural topology, the so-called Zariski topology that
restricts to the usual Zariski topology on AutpPnkq. The automorphisms of BirpP2

Cq are all
inner up to a field automorphism of C [Dés06b], and we explain the generalisation to the
automorphisms of BirpPnkq that are homeomorphisms with respect to the Zariski topology
if k is of characteristic zero obtained in [UZ21].

In §IV.1–IV.2, we present some structure results on the Cremona groups that follow
from the existence of some non-trivial homomorphisms from BirpPnq to free products and
sums of Z{2 explained. These are results from [BLZ21, LZ20, Zim18b].

In §V.2 we present the classification over a perfect field of del Pezzo surfaces of degree
8 and 6, and of exceptional conic bundles, and describe their automorphisms groups, as
given in [SZ21].

In §V.3, we present the classification of the infinite algebraic groups acting birationally
on the projective plane, up to inclusion and conjugacy, as proven in [SZ21].

The Appendix A consists of the list of elementary relations among Sarkisov links
between smooth rational Mori fibre spaces. This is mostly busy-work, and the best place
for such a list is a thesis, a habilitation or a book on Sarkisov links or the Cremona group.
The list can also be found in [LS21].

In this manuscript we impose the following convention: in dimension n “ 2, we work
over an arbitrary perfect field unless stated otherwise, and in dimension n ě 3 we work
over C unless stated otherwise.
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II Sarkisov links and relations
A Sarkisov link is a special type of birational map between terminal Mori fibre spaces
that were introduced by I.V. Iskovskivkh in [Isk91] and M. Reid in [Rei91] after an
announcement by V.G. Sarkisov in [Sar89], which however never seemed to have been
followed up by details. It is shown in [Isk96, Cor95] independently by I.V. Iskovskivkh
and A. Corti that all birational maps between geometrically rational smooth projective
surfaces over a perfect field decompose into Sarkisov links and automorphisms of Mori
fibre spaces. In [Cor95], A. Corti shows that any birational map between Mori fibre
spaces of dimension n “ 3 over C decompose into Sarkisov links and automorphisms of
Mori fibre spaces. The statement is generalised to any dimension by C.D. Hacon and J.
McKernan in [HM13]. Let X be a variety defined over C and BirMoripXq the groupoid
of birational maps between Mori fibre spaces birational to X. In this section, we give
a presentation BirMoripXq “ xSarkisov links, automorphisms | Ry, where R is a set of
generating relations.

II.1 Rank r fibrations and Sarkisov links

We are going to introduce Sarkisov links as defined in [BLZ21] as families of rank 2

fibrations joined by a sequence of pseudo-isomorphisms. We therefore first define the
notion of rank r fibration and then explain that rank 1 fibrations are precisely terminal
Mori fibre spaces, rank 2 fibrations correspond to Sarkisov links between Mori fibre spaces
and rank 3 fibrations correspond to relations between Sarkisov links, called elementary
relations.

II.1.1 Mori dream spaces and Minimal Model Program

Before we define Mori dream spaces, let us recall some notions on divisors. Let X be a
normal variety over C, let DivpXq be the group of Cartier divisors, PicpXq “ DivpXq{ „

the Picard group of divisors modulo linear equivalence, N1pXq “ DivpXqbR{ ” the space
of R-divisors on X modulo numerical equivalence and ρpXq its dimension. We denote by
N1pXq the dual space of 1-cycles with real coefficients modulo numerical equivalence, and
we have a pairing N1pXq ˆ N1pXq ÝÑ R induced by the intersection. The variety X is
Q-factorial if all Weil divisors on X are Q-Cartier, and an element of DivpXqbQ is called
Q-divisor.

Let m ą 0 be a sufficiently large and divisible integer. A divisor D on X is movable
if the base-locus of the linear system |mD| has codimension at least 2 and it is big if the
rational map induced by |mD| is birational onto its image. It is semiample if |mD| is
base-point free, and this is the case if D is the pullback of an ample class by a morphism.
The movable cone MovpXq is the closure of the cone spanned by movable divisors, and
NefpXq is the cone spanned by nef divisors.
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CHAPTER II. SARKISOV LINKS AND RELATIONS II.1. RANK R FIBRATIONS AND SARKISOV LINKS

For a morphism π : X ÝÑ Y between normal varieties we denote by NEpX{Y q Ă

N1pX{Y q Ă N1pXq the cone and the subspace generated by curves contracted by π, and
by N1pX{Y q the quotient of N1pXq by the orthogonal of N1pX{Y q. Its dimension ρpX{Y q
is the relative Picard rank of π. We denote by NefpX{Bq and MovpX{Bq the images of
NefpXq and MovpXq in the quotient N1pX{Y q. We denote by 99K a rational map and
by a pseudo-isomorphism, that is, a birational map that is an isomorphism outside
codimension 2 sets on the domain and target variety.

A normal variety X has rational singularities if for some desingularisation π : Z ÝÑ X

we have Riπ˚OZ “ 0 for all i ą 0, where Riπ˚OZ , i ě 0, is the sheaf defined on each open
affine subset U Ă X as Riπ˚OZpUq “ H ipπ´1pUq,OZq.

Definition II.1.1. A a surjective morphism η : X ÝÑ B between normal varieties is a
Mori dream space if the following conditions hold:

1. X is Q-factorial, and both X and B have rational singularities;
2. a general fibre of η is rationally connected and has rational singularities;
3. NefpX{Bq is the convex cone generated by finitely many semiample divisors;
4. there exist finitely many pseudo-isomorphisms fi : X Xi over B such that each
Xi is a Q-factorial variety satisfying (3) and MovpX{Bq “ Yf˚i pNefpXi{Bqq.

If B is a point, we get back the classical definition of a Mori dream space [HK00].
Let X{B be a surjective morphism between normal varieties whose general fibres

are rationally connected. Assume that X is Q-factorial and that X, B and the general
fibres have rational singularities. Then X{B is a Mori dream space if and only if its Cox
sheaf is finitely generated [BLZ21, Lemma 2.6], which is proven analogously to [KKL14,
Corollaries 4.4 and 5.7].

Let me recall the notion of D-Minimal Model program (or D-MMP): Suppose that
X is normal and Q-factorial. Let π : X ÝÑ Y be a surjective birational morphism with
connected fibres and ρpX{Y q “ 1. If the exceptional locus is of codimension 1, it is a
prime divisor and π is called a divisorial contraction. It is called small contraction if the
exceptional locus is of co-dimensioně 2, and in that case Y is not Q-factorial. Let NEpXq
be the closure of NEpXq and C P NEpXq an extremal class, that is, if C “ C1`C2 with
C1, C2 P NEpXq, then C,C1, C2 are proportional. The contraction of C exists if there
is a surjective morphism π : X ÝÑ Y with connected fibres to a normal variety Y and
ρpX{Y q “ 1 such that any curve contracted by π is numerically proportional to C. If π
is a small contraction, we say that a log-flip of C exists if there is a pseudo-isomorphism
X X 1 (it is birational and does not contract any divisor nor does its inverse) over Y
which is not an isomorphism such that X 1 is normal Q-factorial and X 1 ÝÑ Y is a small
contraction that contracts curves proportional to a class C 1. For each D P N1pXq if D1 is
the image of D unter the pseudo-isomorphism, we have a sign change between D ¨C and
D1 ¨ C 1. We call X X 1 a D-flip if D ¨ C ă 0.

For D P DivpXq, a step in the D-MMP is the removal of an extremal class C P NEpXq
with D ¨C ă 0 via a divisorial contraction or via a D-flip. If D is nef on X, then X is called
D-minimal model. If there exists a contractionX ÝÑ Y with ρpX{Y q “ 1, dimY ă dimX

and ´D relatively ample, we say that X{Y is a D-Mori fibre space. If D is the canonical
divisor of X, it is simply called Mori fibre space.

7
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Proposition II.1.2 ([HK00, Proposition 1.11], or [KKL14, Theorem 5.4]). If X{B is a
Mori dream space, then for any class D P N1pXq one can run a D-MMP from X over B,
and there are only finitely many possible outputs for such MMP.

II.1.2 Rank r fibrations and Sarkisov links

Let X be a Q-factorial normal variety, π : Z ÝÑ X a desingularitation with exceptional
divisors E1, . . . , Er. ThenX is terminal if in the ramification formulaKZ “ π˚KX`

ř

aiEi
we have ai ą 0 for all i. It is klt (Kawamata log terminal) if ai ą ´1 for all i. This does not
depend on the resolution, and being terminal is preserved under the step of the (classical)
K-MMP.

Definition II.1.3 ([BLZ21, Definition 3.1]). Let r ě 1 be an integer. A morphism
η : X ÝÑ B is a rank r fibration if the following conditions hold:

1. X{B is a Mori dream space;
2. dimX ą dimB ě 0 and ρpX{Bq “ r;
3. X is Q-factorial and terminal, and for any divisorD onX the output of anyD-MMP

from X over B is still Q-factorial and terminal;
4. there exists an effective Q-divisor ∆B such that pB,∆Bq is klt;
5. the anticanonical divisor ´KX is η-big.

The notion of rank r fibration seems to be new in literature, although it resembles
the notion of other fibrations, for instance a fibration of Fano type [Bir19], but it has
strong restrictions for allowed singularities. These are imposed for technical reasons; the
definition is made so that rank r fibrations fulfill their purpose.

Example II.1.4 ([BLZ21, Lemma 3.3]). If η : X ÝÑ B is a surjective morphism between
normal varieties, then X{B is a rank 1 fibration if and only if X{B is a terminal Mori
fibre space.

In dimension 2, terminal means smooth and for any rank r fibration X{B, the anti-
canonical divisor ´KX is relatively ample. Indeed, if we start the p´KXq-MMP over B
on a rank r fibration X{B, we cannot contract any curve, because its image would be a
singular point, which contradicts Definition II.1.3(3). So, either ´KX is relatively nef or
there is a fibration such that ´KX is negative against every fibre. Since ´KX is relatively
big over B by hypothesis, the latter is impossible. Now, since X is a smooth surface and
´KX being relatively big and nef over B, it follows that ´KX is relatively ample over B.

A surjective morphism η : X ÝÑ B from a smooth projective surface to a point or a
smooth curve B with connected fibres such that ´KX is η-ample and ρpX{Bq “ r is a
rank r fibration, because (smooth) del Pezzo surfaces and (smooth) conic fibrations whose
singular fibres have at most two connected components are Mori dream spaces.

Definition II.1.5 ([LZ20, §2.1]). Let k be a perfect field. A rank r fibration in dimension
2 over k is defined to be a surjective morphism X ÝÑ B from a smooth projective surface
over k with Xpkq ‰ H to a smooth curve or point B with connected fibres such that
´KX is relatively ample and ρpX{Bq “ r.

8
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Remark II.1.6. The argument from above can be generalised. Given a rank r fibration
η : X ÝÑ B, we can run a p´Kq-MMP from X over B. The restriction on the singularities
of X imply that the only possible step is log-flips and after finitely many steps we’ll arrive
on a rank r fibration such that ´K is relatively big and nef [BLZ21, Lemma 3.5]. Then
for a general point p P B the fibre η´1ppq is pseudo-isomorphic to a terminal weak Fano
variety [Kol97, 7.7] and the set of curves in η´1ppq that are trivial against the canonical
divisor cover a subset of codimension ě 2 in η´1ppq [BLZ21, Corollary 3.6].

We say that a rank r fibration X{B factorises through a rank r1 fibration X 1{B1, or
that X 1{B1 is dominated by X{B, if the fibration X{B and X 1{B1 fit into a commutative
diagram

X B

X 1 B1

where X 99K X 1 is a birational contraction and B1 ÝÑ B is a morphism with connected
fibres. It implies r ě r1. If the birational map X 99K X 1 is a morphism, then X{B1 is
a rank ρpX{B1q fibration. If X{B is rank r fibration and Y is obtained by performing a
log-flip (resp. divisorial contraction) over B, then Y {B is a rank r fibration (resp. rank
r ´ 1 fibration) [BLZ21, Lemma 3.4].

Example II.1.7 ([BLZ21, Lemma 3.7], [LZ20, §2.3]). Let Y {B be a rank 2 fibration over
C and dimY ě 2, or over a perfect field k and dimY “ 2. Running the two-rays game
from Y over B means that there are exactly two rank 1 fibrations (“ terminal Mori fibre
spaces) X1{B1, X2{B2 dominated by Y {B, that both fit into a commutative diagram

Y

B

where the dotted arrows are sequences of log-flips, and the other four arrows are morphisms
of relative Picard rank 1. The induced birational map χ : X1 99K X2 is called Sarkisov link,
and the diagram is called Sarkisov diagram. While a rank 2 fibration uniquely determines
the Sarkisov diagram, it only defines the link up to taking inverse. We thus have the
four types of links listed in Figure II.1, where an arrow marked with div is a divisorial
contraction, an arrow marked fib is a rank 1 fibration, and the dotted arrows are sequences
of log-flips.

In [Isk96, Cor95, HM13], the definition of Sarkisov links is also made to correspond
to a two rays-game, but they ask for less conditions on the singularities of the fibres.
In dimension n “ 2, a link of type II over a curve B is classically called elementary
transformation.

Example II.1.8. Let us illustrate a well-known composition of Sarkisov links over an
arbitrary perfect field k. Consider the involution σ : rx : y : zs Þ99K ryz : xz : xys of P2

k.
It has three rational base-points, namely p1 :“ r1 : 0 : 0s, p2 :“ r0 : 1 : 0s, p3 :“ r0 :

0 : 1s, and contracts the three lines passing through any two of the three. We can write
σ “ χ4 ˝ ¨ ¨ ¨ ˝ χ1, with χ1, . . . , χ4 the Sarkisov links in the commutative diagram below,

9
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X2

X1 B2

B1 “ B

div fib
χ

fib

X1 X2

B1 “ B “ B2

div div

χ

fib fib

I II

X1

B1 X2

B “ B2

χ
fib div

fib

X1 X2

B1 B2

B

χ
fib fib

III IV

Figure II.1: Rank 2 fibrations correspond to any of the four types of Sarkisov links.

where the blow-ups are marked with the point that is blown up or the fibre fp containing
the point p that is contracted, or the exceptional curve E Ă F1 that is contracted.

Y1 Y2

F1 F0 F1

P2 P1 P2

˚ ˚

p2 fp2 p3 fp3

p1

χ2 χ3

E

χ4

χ1

Example II.1.9 ([BLZ21, Lemma 4.2, Proposition 4.3],[LZ20, Proposition 2.6]). Let T {B
be a rank 3 fibration that factorises through a rank 1 fibration X1{B1, again over C and
dimT ě 2, or over a perfect field and dimT “ 2. Then there exist exactly two rank 2

fibrations that factorise through X1{B1 and that are dominated by T {B, up to pseudo-
isomorphisms X2 X 1

2 between rank 2 fibrations X2{B2 and X 1
2{B

1
2 such that there is a

commutative diagram
T

X2 X 1
2

B2 B12
„

Since T {B is a Mori dream space, one can run any D-MMP from T and there are only
finitely many outcomes of such MMP, see Proposition II.1.2. So, T {B dominates only
finitely many rank 1 fibrations, and hence it dominates only finitely many Sarkisov links
χi, and they fit into a relation

χt ˝ ¨ ¨ ¨ ˝ χ1 “ id.

We call it an elementary relation between Sarkisov links dominated by T {B. It is uniquely
defined by T {B up to taking inverse, cyclic permutation and insertion of isomorphisms.
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We say that a group G is generated by a set S Ă G if there is a surjective morphism
of groups π : FS ÝÑ G, where FS is the free group generated by S. A subset R Ă kerπ

is called a set of generating relations of G if it generates kerπ as normal subgroups, that
is, if any element of kerπ is a composition of elements of the form Πk

i“1wiriw
´1
i , with

r1, . . . , rk P R Y R´1 and w1, . . . , wk P FS. The notions of morphisms, generating set and
generating relations can be transferred to groupoids.

For a variety X, we denote by BirMoripXq the groupoid of birational maps X 1 99K X2

between rank 1 fibrations X 1{B1 and X2{B2 with X 1, X2 birational to X.

Theorem II.1.10 ([HM13],[Cor95],[Isk96]).

1. For any projective surface X over a perfect field k with Xpkq ‰ H, the groupoid
BirMoripXq is generated by Sarkisov links and isomorphisms between Mori fibre
spaces.

2. For any variety X over C of dimension ě 3, the groupoid BirMoripXq is generated
by Sarkisov links and isomorphisms between Mori fibre spaces.

Theorem II.1.10 was proven for projective surfaces by [Cor95] by A. Corti based on
an announcement in [Sar89] by V.A. Sarkisov, and reproven by V.A. Iskovskikh in
[Isk96]. Based on the same idea of factorisation, V.A. Iskovskikh had produced earlier
a generating set of BirpP2

kq over a perfect field k in [Isk91]. In dimension n “ 3 over C
the statement is proven in [Cor95], and in any dimension n ě 2 over C it is shown in
[HM13]. The proofs in [Isk91, Isk96, Cor95] provide an algorithm for the decomposition,
while [HM13] is not algorithmic. The definition of Sarkisov links in [BLZ21, LZ20] is more
restrictive than the one in [Isk91, Cor95, HM13], but the proofs of the above statement
can be repeated, as is done in [BLZ21, Theorem 4.28(1)] and [LZ20, Theorem 3.1(1)],
with some technical brewing in dimension ě 3 to accommodate all conditions imposed by
the notion of rank r fibrations.

By trivial relations between Sarkisov links we mean relations between isomorphisms
and relations of the form pχ1q´1αχ “ 1, where χ : X 99K X 1, χ1 : X 1 99K X2 are Sarkisov
link and α : X 1 „

ÝÑ X2 is an isomorphism such that χ1 “ α ˝ χ.

Theorem II.A ([BLZ21, Theorem 4.28(2)], [LZ20, Theorem 3.1(2)]).

1. For a projective surface X over a perfect field k with Xpkq ‰ H, any relation
between Sarkisov links in BirMoripXq is generated by the trivial relations and the
elementary relations.

2. For a variety over C of dimension ě 3, any relation between Sarkisov links in
BirMoripXq is generated by the trivial relations and the elementary relations.

Theorem II.A is inspired by [Kal13, Theorem 1.3], where however the definition of
elementary relation in [Kal13] is different from the one in [LZ20, BLZ21]. In [Kal13, p.1687]
a relation χr ˝ ¨ ¨ ¨ ˝ χ1 “ id of Sarkisov links χi : Xi{Bi 99K Xi`1{Bi`1, i “ 1, . . . , r, is
called an elementary relation if there exists a variety B with morphisms Bi ÝÑ B that
commutes with the links and such that ρpXi{Bq ď 3 for all i “ 1, . . . , r.

[IKT93] gives a presentation of BirpP2
kq in terms of the generating set produced in

[Isk91]. The set of generators and the set of generating relations is very large because

11
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they insist for the elements to be contained in BirpP2
kq, although they implicitly see the

maps as compositions of Sarkisov links, as is evident from the notation they use. The list
was not used in the proof of Theorem II.A(1). We list all elementary relations between
Sarkisov links in dimension 2 over an arbitrary perfect field in Appendix A. In §II.3 and
§II.4 we present some special examples of elementary relations in dimension 2 and ě 3,
respectively.

II.2 Why are elementary relations enough?

In this section, we explain the rough idea of why any relation among Sarkisov links in
BirMoripXq is generated by elementary relations. For smooth projective surfaces over a
perfect field with non-empty set of rational points the same idea works if made Galpk{kq-
equivariant, and this exactly what is done in [LZ20, §3] to prove Theorem II.A(1).

II.2.1 The set-up: seeing the MMPs on a fan C

We first define an ample model of a divisor as given in [BCHM10, Definition 3.6.5]. Let
Z be a terminal Q-factorial variety, D an R-divisor on Z and ϕ : Z 99K Y a dominant
rational map to a normal variety Y with a resolution

W

Z Y

p q

ϕ

whereW is smooth, p is a birational morphism and q is a morphism with connected fibres.
We say that ϕ is an ample model of D if there exists an ample divisor H on Y such that
p˚D is linearly equivalent to q˚H ` E, where E ě 0, and for each effective R-divisor R
linearly equivalent to p˚D we have R ě E. If ϕ is a birational contraction, we say that ϕ
is a semiample model of D if H “ ϕ˚D is semiample (hence in particular R-Cartier) and
if p˚D “ q˚H ` E where E ě 0 is q-exceptional.

Some references ask an ample model of a Q-divisor D to factorise through a semiample
model. If it does, the ample model is the rational map ϕD associated to the linear system
|mD| for some m " 0, whose image is ZD “ Projp‘mH

0pZ,mDqq, where the sum is over
all integers such that mD is Cartier, see [KKL14, Remark 2.4(ii)]. The ample model exists
if the ring

À

mH
0pZ,mDq is finitely generated, which is the case if D “ KZ `A for some

ample Q-divisor, as follows from [BCHM10, Corollary 1.1.2]. If it exists, it is unique up
to composing with an isomorphism, and a birational map ϕ : Z 99K Y is the ample model
of D if and only if it is a semiample model of D and ϕ˚D is ample [BCHM10, Lemma
3.6.6].

The following proposition is assembled from [HM13, Lemma 4.1] and [Kal13, Propo-
sition 3.1(ii)], see [BLZ21, Proposition 4.23].

Proposition II.2.1. Let t ě 2 be an integer. For i “ 1, . . . , t, let ηi : Xi ÝÑ Bi be a
terminal Mori fibre space and let θi : Xi 99K Xi`1 be a birational map, where Xt`1 :“ X1.

12
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Suppose that θt˝¨ ¨ ¨˝θ1 “ id. Then there exists a smooth variety Z together with birational
morphisms πi : Z ÝÑ Xi, i “ 1, . . . , t, and ample Q-divisors A1, . . . , Am on Z such that
the following hold:

1. the divisors A1, . . . , Am generate the R-vector space N1pZq;
2. for i “ 1, . . . , t, the birational morphism πi and the morphism ηi ˝ πi are the ample

models of an element of

C “ ta0KZ `

m
ÿ

i“1

aiAi P N
1
pZq | a0, . . . , am ě 0u X EffpZq

3. for i “ 1, . . . , t we have θi˝πi “ πi`1 (with πt`1 :“ π1). We then have a commutative
diagram

Z

X1

π1
X2

π2

X3 π3

X4

π4

X5

π5

Xt
πt

Xt´1
πt´1

θ1

θ2

θ3

θ4

...

θt´1

θt

We say that two divisors D and D1 on Z are Mori equivalent if they have the same
ample model. In the situation of Proposition II.2.1 every element of C has an ample
model, as mentioned before the statement. The Mori equivalence classes induce a partition
C “ >iPIAi. We call the Ai Mori chambers, and we denote by ϕi : Z 99K Zi the common
ample model of all D P Ai. It follows from [HM13, Theorem 3.3] that in our setting the
partition is finite, C is a cone over a polytope, each Ai is a finite union of relative interiors
of cones over rational polytopes (see [BLZ21, Proposition 4.11]). While [HM13, Theorem
3.3] work in DivpZq, we work in N1pZq because numerically equivalent divisors belong to
the same Mori chamber in DivpZq, see [KKL14, Lemma 3.11] for the big case and [BLZ21,
Proposition 4.14(5)] for the non-big case.

The fan on C: We say that a Mori chamber has maximal dimension if it spans the
R-vector space N1pZq. This is equivalent to ϕi being birational and Zi is Q-factorial,
and equivalent to ϕi being a birational contraction that is output of a pKZ ` ∆q-MMP
for some KZ ` ∆ P C [HM13, Theorem 3.3(3)]. The closure of the chambers of the
maximal dimension yields a fan structure on C, which is the image in N1pZq of the fan
structure considered in [KKL14, Theorem 3.2&4.2], and which in turn generalises the fan
in [ELM`06]: for each Mori chamber Ai of maximal dimension, the closure of Ai is

Ai “ tD P C | ϕj is the semiample model of Du

and it is the intersection of C with the closed convex cone generated by ϕ˚i NefpZiq and by
the exceptional divisors of ϕi. For any i, j such that AjXAi ‰ H, there exists a morphism
ϕji : Zj ÝÑ Zi with connected fibres such that ϕi “ ϕji ˝ ϕj. If ϕj is birational (i.e. Aj
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maximal), then

Aj XAi “ tD P Aj | ϕj˚D ¨ C “ 0 for each C P N1pZj{Ziqu

[HM13, Theorem 3.3(2)] or [KKL14, Theorem 4.2(3)], see also [BLZ21, Proposition 4.41]
(and [LZ20, Proposition 3.7] in dimension 2 over non-closed fields).

Let B`C Ă C be the set of non-big divisors. It is a closed subset of the boundary of C,
and Ai Ă B

`C if dimZi ă dimZ, and Ai Ă CzB`C if dimZi “ dimZ.

The fan on C encodes MMPs: for an ample divisor ∆ in C, the successive chambers
intersected by the segment r∆, KZsXC correspond to successive steps in a KZ-MMP from
Z. It is called a KZ-MMP with scaling ∆ in [BCHM10, Remark 3.10.10]. By perturbing
∆ a little, the segment r∆, KZs becomes transversal to the polyhedral decomposition.
The intermediate codimension 1 faces cut by r∆, KZs in CzB`C are steps in the MMP
corresponding to a log-flip or a divisorial contraction. They correspond to walls given by
a change of sign of the intersection of KZ ` ∆ with curves in an exceptional divisor of
some ϕj. The intersection of r∆, KZs with B`C is the last step of the MMP.

II.2.2 Rank r fibrations correspond to special faces in B`C

Let us look more closely at a special type of codimension r ě 1 faces in C.

Inner faces of C: Let F r be a face of the fan C of codimension r, that is the codimension
in N1pZq of the smallest vector space containing it. We say that it is an inner face if
it meets the interior of C or the relative interior of B`C. [BLZ21, §4.B] summarises the
following facts on inner faces of C. Any inner face F r is of the form F r “ Aj XAi, where
Aj is of maximal dimension and Ai contains the interior of F r [KKL14, Theorem 4.2(2)].
The index i is uniquely determined by this property. It follows from the proof of [HM13,
Theorem 3.3(4)] that

F r
“ tD P Aj | pϕjq˚D ¨ C “ 0 @C P N1pZj{Ziqu

is in the vector space spanned by ϕ˚i NefpZiq and the exceptional locus of ϕj and r “

ρpZj{Ziq.

Two types of codimension 1 faces: The following description of inner faces with
codimension r “ 1 follows from the description of the K-MMP with scaling on C and the
above properties.

• Suppose that F1 “ Aj XAk for some distinct chambers of maximal dimension.
1. If Ai is of maximal dimension, we can take Ak “ Ai and then ϕji : Zj ÝÑ Zi

is a divisorial contraction.
2. If Ai is not of maximal dimension, then both ϕki and ϕji are small contractions

and the induces birational map Zj Zk is a log-flip.
• If F1 is contained in the closure of a unique chamber Aj of maximal dimension, then
F1 Ď B`C. In particular, dimZi ă dimZ and ϕji : Zj ÝÑ Zi is a rank 1 fibration
(i.e. terminal Mori fibre space). For this, see also [Kal13, Lemma 3.2].
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We extend this description for inner codimension r faces:

Proposition II.B ([BLZ21, Proposition 4.25], [LZ20, Proposition 3.10]). Let F r Ď B`C
be an inner face of codimension r and write F r “ Aj X Ai as above with Aj a chamber
of maximal dimension and Ai Ď B

`C the chamber containing the interior of F r. Then
1. the associated morphism ϕji : Zj ÝÑ Zi is a rank r fibration;
2. if F s Ď B`C is an inner codimension s face and F r Ď F s, then the rank r fibration

ϕji associated to F r factorises through the rank s fibration associated to F s.

The first part of the following Corollary II.C is [HM13, Theorem 3.7], and the second part
is a natural generalisation.

Corollary II.C ([BLZ21, Corollary 4.27], [LZ20, Corollary 3.11, Corollary 3.13]).

1. If the intersection F1
i X F1

j of non-big codimension 1 inner faces has codimension
2, then there is a Sarkisov link between the corresponding Mori fibre spaces.

2. Let F3 Ď B`C be an inner face of codimension 3 and T {B the associated rank
3 fibration from Proposition II.B. Then the elementary relation associated to T {B
corresponds to the finite collection of codimension 1 faces F1

1 , . . . ,F1
s containing F3,

and ordered such that F1
j and F1

j`1 share a codimension 2 face for all j (where the
indexes are taken modulo s).

Let us illustrate the Mori chambers Ai and the inner codimension r faces F r on the
blow-up of P2 in two distinct points.

Example II.2.2 ([Kal13, §1],[BLZ21, Examples 4.20&4.26]). We illustrate the definition
of Mori chambers and faces on the example of the blow-up Z ÝÑ P2 at two distinct points
p1 and p2, see Figure II.2 and Figure II.4. We denote by E1, E2 Ă Z the curves contracted
onto p1, p2 P P2 respectively, by L the strict transform of the line through p1 and p2, and
by H “ L`E1`E1 the pull-back of a general line. The cone EffpZq of effective divisors on
Z is the closed convex cone generated by E1, E2 and L, which are the only p´1q-curves on
Z, while the cone NefpZq is the closed convex cone generated by H,H ´E1 and H ´E2.
The anti-canonical divisor ´KZ “ 3H ´ E1 ´ E2 “ 3L ` 2E1 ` 2E2 is ample. In the
figure we represent an affine section of the cone, and all divisors must be understood up
to rescaling by an adequate homothety: for instance this is really ´1

7
KZ that is in the

same affine section as E1, E2 and L, but for simplicity we write ´KZ .
There are eight Mori chambers A0, . . . ,A7, see Figure II.3, corresponding to mor-

phisms ϕi : Z ÝÑ Zi, i “ 0, . . . , 7 to the varieties Z0 “ Z, Z1 “ Z2 “ F1, Z3 “ F0,
Z4 “ P2, Z5 “ Z6 “ P1 and Z7 “ pt in the commutative diagram belog, ϕ0 being the
identity. The two morphisms ϕ14, ϕ24 : F1 ÝÑ P2 are the blow-ups of p1, p2 P P2 respec-
tively, and ϕ1, ϕ2 : Z ÝÑ F1 are the blow-ups of the images of p1 and p2. The morphisms
ϕ15, ϕ26 : F1 ÝÑ P1 correspond to the P1-bundle of F1 and ϕ3 “ ϕ5 ˆ ϕ6 : Z ÝÑ F0 “

P1 ˆ P1.
The faces F0

i “
ĎAi, i “ 0, . . . , 4 are the faces of maximal dimension, and we write

F r
ji “

ĎAj XĎAi, where r is its codimension. Every face of C “ EffpZq is inner.
The ample chamber A0 is the only open one and A7 is the only closed one. Moreover,

as a hint that the behaviour of non maximal Mori chambers can be quite erratic, observe
that A7 “ ĎA7 is not connected, and that neither ĎA5 nor ĎA6 is a single face.
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‚

‚‚

‚ ‚

‚

‚́KZ

E2

L` E2
“ H ´ E1

L

L` E1
“ H ´ E2

E1

H

Z0 “ Z

Z1 “ F1 Z3 “ F0 Z2 “ F1

Z5 “ P1 Z4 “ P2 Z6 “ P1

Z7 “ pt

ϕ2ϕ1
ϕ3

ϕ36ϕ35 ϕ26

ϕ57

ϕ15

ϕ14 ϕ24

ϕ47
ϕ67

Figure II.2: The ample models in Example II.2.2.

A0 “ F̊0
0

A1 “ F̊0
1 Y F̊1

01

A2 “ F̊0
2 Y F̊1

02

A3 “ F̊0
3 Y F̊1

03

A4 “ F̊0
4 Y F̊1

14 Y F̊1
24 Y F̊2

04

A5 “ F̊1
15 Y F̊1

35 Y F̊2
05

A6 “ F̊1
26 Y F̊1

36 Y F̊2
06

A7 “ F̊1
47 Y F̊2

17 Y F̊2
27 Y F̊2

37

Figure II.3: The Mori chambers and inner faces in Example II.2.2

[LZ20, Example 3.6] illustrates a similar example to the above but with two points in
P2 of which one is infinitely near the other.

Example II.2.3. For rational Pezzo surface Z over k “ Q that is obtained by blowing
up three points in P2

Q, S. Lamy provides on his webpage a visualisation of C, or, more
precisely, of an affine section of C.

II.2.3 Elementary relations generate all relations among links

Consider a composition of Sarkisov links

X1{B1

χ1
99K X2{B2

χ2
99K ¨ ¨ ¨ 99K Xt{Bt

χt
99K Xt`1{Bt`1

between terminal Mori fibre spaces Xi{Bi, i “ 1, . . . , t` 1.

Compositions of links as paths on a 2-simplicial complex I: Take Z dominating
the composition χt ˝ ¨ ¨ ¨ ˝ χ1 and consider the cone C of Mori chambers. We can assume
that ρpZq ě 4; if it is not, we blow-up some general points on Z. This means that B`C is
a cone over a polyhedral complex of dimension ρpZq ´ 2 ě 2 [BLZ21, Lemma 4.24] (see
also [Kal13, Proposition 3.1]). In particular, a section S of B`C is simply connected.

We consider the 2-skeleton of the dual cell complex of S, which is also simply connected.
Its barycentric subdivision B is simply connected as well and it can be constructed as
follows (up to homeomorphism): a vertex vr corresponds to a face F r of codimension
r P t1, 2, 3u, and two vertices vr, vs are joined if the corresponding face F r is a proper
face of F s. The subcomplex I Ď B corresponding to inner faces of B`C is a deformation
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F1
15

F1
35 F1

36

F1
26

F1
47

F1
14 F1

24

F1
01 F1

02

F1
03

‚

‚‚

‚ ‚

‚

F2
17

F2
05

F2
37

F2
06

F2
27

F2
04

F0
4 “

ĎA4

F0
1 “

ĎA1

F0
3 “

ĎA3

F0
2 “

ĎA2

F0
0 “

ĎA0

Z1{Z5“P1

Z3{Z5“P1 Z3{Z6“P1

Z2{Z6“P1

Z4{Z7“pt

‚

‚‚

‚ ‚

‚

Z1{Z7“pt

Z0{Z5“P1

Z3{Z7“pt

Z0{Z6“P1

Z2{Z7“pt

Z4“P2

Z1“F1

Z3“F0

Z2“F1

Z0“Z

Figure II.4: The Mori chambers and rank r fibrations in Example II.2.2

retract of B, because the inner faces are the ones intersecting the relative interior of S.
Hence I is simply connected as well.

By Proposition II.B, each vertex of I corresponds to an inner face in B`C of codimen-
sion r “ 1, 2 or 3, and they are connected by an edge if and only if the corresponding
rank r fibrations factor through each other.

The composition χt ˝ ¨ ¨ ¨ ˝ χ1 corresponds to a path in I through vertices of the form
v1 and v2.

Relations of links are loops I: By Proposition II.B, each vertex in I of the form v3 is
the center of a disc whose boundary corresponds to the elementary relation of Sarkisov
links dominated by the rank 3 fibration corresponding to v3.

A relation χt ˝ ¨ ¨ ¨˝χ1 “ id corresponds to a loop in I, and since I is simply connected,
that loop is homotopic inside I to the constant loop. This means the loop can be filled up
with the discs around vertices of the form v3, which means that the relation χt˝¨ ¨ ¨˝χ1 “ id

is the composition of conjugates of elementary relations.

We have shown that for any variety X of dimension ě 2 over C, the elementary
relations in BirMoripXq generate all relations among Sarkisov links (and isomorphisms)
in BirMoripXq.

II.3 Elementary relations in dimension 2 over a perfect
field

Throughout this section, k is a perfect field unless mentioned otherwise. The complete
list of elementary relations of Sarkisov links between rational surfaces over a perfect field
can be found in Appendix A. For k “ C and k “ R, the lists have reasonable length
as explained in the following two examples. An elementary relation referred to pX, a, bq
means that the dominating rank 3 fibration is obtained by blowing up the del Pezzo
surface X with ρpXq “ 1 in a point of degree a and a point of degree b.

Example II.3.1. A Mori fibre space birational to P2
C is isomorphic to P2

C or a Hirzebruch

17
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surfaces Fn{P1, n ě 0. Thus the elementary relations of Sarkisov links in BirMoripP2
Cq

are §A.2.6pP2, 1, 1q and the relations in Remark A.1.1 involving links between Hirzebruch
surfaces.

Example II.3.2 ([Zim18b, §2]). Any Mori fibre space birational to P2
R is isomorphic to

P2
R, the quadric surface Q “ tw2`x2`y2 “ z2u Ă P3, a Hirzebruch surface Fn{P1, n ě 0,

or the conic bundle S{P1 obtained by blowing up Q in a pair of non-real conjugate points
not contained in the same fibre of QC. (The fibres of S{P1 are the strict transforms of the
bidegree p1, 1q-curves through the two blown-up points). Thus the elementary relations
between Sarkisov links in BirMoripP2

Rq are §A.2.6pP2, 1, 1q&pP2, 1, 2q, and §A.2.5pP2, 2, 2q,
and §A.2.4pQ, 2, 2q, and the relations in Remark A.1.1 involving links between Hirzebruch
surfaces and links from S{P1 to itself. Theorem IV.A states that BirpP2

Rq is a free product
of two groups amalgamated along their intersection, and it is proven using the fact that
these relations generate all relations in BirMoripP2

Rq.

The following example is a special trivial relation in BirMoripP2
kq over a perfect field.

Example II.3.3 ([LZ20, Lemma 4.3],[IKT93, §2]). Let X1 be a rational del Pezzo surface
with ρpXq “ 1, so that X1{ pt is a Mori fibre space. Suppose it contains a point p of degree
degppq “ K2

X1
´1 and that its blow-up T ÝÑ X1 yields a del Pezzo surface T , which is then

of degree 1. Then T { pt is a rank 2 fibration and dominates a Sarkisov link χ : X1 99K X1,
called a Bertini link, which has base-locus p.

Geometrically, χ is defined as follows: there exists a unique rational point q P X1 such
that for a general point t P X1 there is a unique smooth elliptic curve in X1 through
p, q, t. The map t ÞÑ ´t, where ´t is the opposite of t with respect to the group law on
the elliptic curve, induces a birational involution β : X1 99K X1 not defined at p, called
Bertini involution. There exists α P AutpX1q such that χ ˝ α “ β.

Since T is a del Pezzo surface of degree 1, a Bertini link is never dominated by a rank
3 fibration, and β2 “ id is a trivial relation.

Theorem II.3.4 below gives a short description of generating relations in BirMoripP2
kq,

and it was proven by J. Schneider independently of Theorem II.A or [IKT93] with a
beautiful self-contained proof that studies linear systems of curves. The Galois depth of
a birational map χ : X 99K X 1 between smooth projective surfaces is the maximal degree
among all base-points of χ and χ´1.

Theorem II.3.4 ([Sch19, Theorem 2]). Let k be a perfect field and X a projective surface
over k. Then the relations in BirMoripXq are generated by the trivial relations and relation
of the form

• χn ˝ ¨ ¨ ¨ ˝ χ1 “ id, where the Galois depth of all χi is ď 15, and
• χ4 ˝ χ3 ˝ χ2 ˝ χ1 “ id, where for i “ 1, . . . , 4, χi is a link of type II between Mori
fibre spaces over a curve and χ3 is not defined in the image by χ2 of the base-point
of χ´1

1 .

Remark II.3.5. In Theorem II.3.4 the degree of the points blown up by the first type of
relations is bounded by 15, which arises from the method used to prove Theorem II.3.4
in [Sch19]. Theorem II.3.4 can also be deduced from Theorem II.A(1), and then we can

18
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lower the bound of the Galois depth to 8: Let χ1 : X1{B1 99K X 1
1{B

1
1 be a Sarkisov link

appearing in an elementary relation dominated by a rank 3 fibration η3 : X3 ÝÑ B3.
We can assume that χ1 that it is not an isomorphism. Let η2 : X2 ÝÑ B2 be the rank
2 fibration dominating χ1. There is a biratonal morphism ϕ : X3 ÝÑ X2 making the
following diagram commute.

X3 X2 X1 B1 B2 B3ϕ

η3

π

η2

‚ Suppose that B3 is a point. Then X3 is a del Pezzo surface, and hence also X2 and
X1 are del Pezzo surfaces. If B1 is a point as well, then ρpX3{X1q “ 2 and χ1 is a link of
link of type I or a link of type II over a point. It follows that X 1

1 is a del Pezzo surface as
well. In any case, the Galois depth of χ1 is at most 8. If B1 is a curve, then ρpB1{B3q “ 1,
which implies that ϕ : X3 ÝÑ X2 or π : X2 ÝÑ X1 is an isomorphism, but not both. If π
is an isomorphism, then χ1 is a link of type III and X 1

1 is a del Pezzo surface as well, so
the Galois depth of χ1 is at most 8. If ϕ is an isomorphism, then χ1 is a link of type II
over B1. Since such a link is symmetric and X3, X2, X1 are del Pezzo surfaces, it follows
that the Galois depth of χ1 is at most 8.
‚ Suppose now that B3 is a curve. Then B1 ÝÑ B2 ÝÑ B3 is an isomorphism and

π ˝ ϕ is a sequence of blow-ups of points contained in distinct smooth fibres over B3 and
whose geometric components are in distinct geometric fibres. This is the case for all Mori
fibre space appearing as domain or target of a Sarkisov link in the elementary relation
dominated by X3{B3, so all links appearing in this relation are links of type II between
Mori fibre spaces over B3. The only birational contractions starting from X3 over B3 are
contractions of components of singular fibres. Since π ˝ϕ is the blow-up of two points over
B3, the fibration X3{B3 has only two singular fibres whose components can be contracted
from X3 over k. It follows that there are only four contractions starting from X3 over B3.

II.4 Elementary relations in dimension ě 3

In this subsection, the base field is C, except if mentioned otherwise. Elementary relations
dominated by a terminal Fano variety of Picard rank 3 are studied in [Kal13, Example
4.9]. A beautiful elementary relation between Sarkisov links between non-rational Fano
threefolds is presented in [AZ16, §5.2]. The following examples of relations among Sarkisov
links are analogous to the relations explained in the previsous section.

II.4.1 Relations involving Bertini type links

Let X1{B1 and X2{B2 be Mori fibre spaces with dimX1 “ dimX2 “ 3. A Bertini type
link is a Sarkisov link χ : X1 99K X2 of type II over a curve B1 “ B2 with base-locus
a curve Γ1 Ă X1, such that the generic fibre of the rank 2 fibration dominating χ is a
del Pezzo surface of degree 1. The inverse χ´1 is not defined in a curve birational to Γ1
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[BY20, Remark 2.7], and we denote by gpχq the geometric genus of Γ1.The elementary
relations involving Bertini type links are studied in [BY20] using Theorem II.A(2) and
Proposition II.4.2:

Proposition II.4.1 ([BY20, Proposition 3.3, Proposition 3.6]).

1. There exists g ě 1 such that no Bertini type link χ with gpχq ě g occurs in a
non-trivial elementary relation dominated by a rank 3 fibration over a point.

2. If χ1 : X1{B 99K X2{B is a Bertini type link appearing in a non-trivial elementary
relation dominated by a rank 3 fibration over a curve, then this relation is of the
form χ4 ˝ χ3 ˝ χ2 ˝ χ1 “ id, where χ3 : X 1

1{B
1 99K X 1

2{B
1 is a Bertini type link, and

χ2 induces an isomorphism between the generic fibres of X2{B and X 1
1{B

1 and an
isomorphism B ÝÑ B1.

II.4.2 Relations involving conic fibrations

A Mori conic bundle is a rank 1 fibration X{B with dimB “ dimX ´ 1. Two Mori conic
bundles X{B and X 1{B1 are equivalent if there exists a commutative diagram

X X 1

B B1

ψ

θ

where θ, ψ are birational. A marked Mori conic bundle is a triple pX{B,Γq, where X{B is
a Mori conic bundle and its marking Γ Ă B is an irreducible hypersurface not contained in
the discriminant locus of X{B. Two marked Mori conic bundles pX{B,Γq and pX 1{B1,Γ1q

are equivalent if there exists a commutative diagram as above such that the restriction of
θ induces a birational map Γ 99K Γ1 between the markings. Let χ : X1{B 99K X2{B be a
Sarkisov link of type II between of Mori conic bundles of dimension n ě 2. Recall that χ
fits in a commutative diagram of the form

Y1 Y2

X1 X2

B

ϕ

π1 π2
χ

η1 η2

(II.1)

where Y1{B, Y2{B are rank 2 fibrations, ϕ is a sequence of log-flips, each πi is a divisorial
contraction with exceptional divisor Ei Ă Yi and centre Γi “ πipEiq Ă Xi, and B is
Q-factorial and klt [Fuj99, Corollary 4.6].

Proposition II.D ([BLZ21, Lemma 2.13, Lemma 3.23]). Let χ : X1{B 99K X2{B be a
Sarkisov link of type II between Mori conic bundles with n :“ dimX1 ě 3. Then there
exists an irreducible hypersurface Γ Ă B pof dimension n´ 2q such that

1. for i “ 1, 2, the centre Γi “ πipEiq has codimension 2 in Xi, and the restriction
ηi|Γi

: Γi ÝÑ Γ is birational. In particular, for each i we have ηi ˝ πipEiq “ Γ, and
the marked Mori conic bundles pX1{B,Γq and pX2{B,Γq are equivalent.
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2. Let Y be equal to Y1, Y2, or any one of the intermediate varieties in the sequence ϕ
of log-flips. Then E1 Y E2 is the Zariski closure of the set of fibres of dimension 1

over Γ.
3. Γ is not contained in the discriminant locus of η1, or equivalently of η2, which means

that a general fibre of ηi : η´1
i pΓq ÝÑ Γ is isomorphic to P1.

4. At a general point x P Γi, the fibre of Xi{B through x is transverse to Γi.
5. For i “ 1, 2, πi is locally the blow-up of Γi.

In dimension 2 over a perfect field, the analogous statement of Proposition II.D for a
link of type II between Mori conic bundles is precisely the definition of such a link. The
base-point p of the link and the base-point p1 of its inverse are isomorphic k-varieties of
dimension 0. In particular, the minimal degree of extensions kppq{k and kpp1q{k are equal.
We now generalise this for the hypersurface Γ Ă B in the Proposition II.D.

For a curve C, one defines the gonality gonpCq of C to be the minimal possible degree
of a dominant rational map C 99K P1. We have gonpCq “ 1 if and only if C is rational,
we have gonpCq “ degpCq´1 if C is a smooth plane curve of degree ě 2, and gonpCq “ 2

if C is a hyperelliptic curve.
More generally, we define the covering gonality and the connecting gonality of a variety

Γ as in [BDE`17]:
1. The covering gonality cov. gonpΓq of Γ is the minimal real number c ą 0 such that

there is an open dense set U Ă Γ such that each point in U is contained in an
irreducible curve C Ă Γ with gonpCq ď c.

2. The connecting gonality conn. gonpΓq of Γ to be the smallest real number c ą 0

such that there is an open dense subset U Ă Γ such that any two points in U are
contained in an irreducible curve C Ă Γ with gonpCq ď c.

If Γ is a closed subset of Pn, we can project it onto a linear subspace of Pn of di-
mension dimpΓq. The preimages of general lines cover an open dense subset of Γ, so that
cov. gonpΓq ď degpΓq. [BDE`17, Theorem A] states that if Γ Ă Pn`1 is an irreducible
hypersurface of degree d ě n ` 2 with canonical singularities, then cov. gonpΓq ě d ´ n.
For a link χ of type II between Mori conic bundles as in Proposition II.D, we define

cov. gonpχq :“ cov. gonpΓq.

We associate to χ the equivalence class of the marked Mori conic bundle pX1{B,Γq. We
say that two Sarkisov links of type II between Mori conic bundles are equivalent if their
associated markings are equivalent. The following statement is the higher dimensional
analogon to Theorem II.3.4.

Theorem II.E ([BLZ21, Proposition 5.3, Proposition 5.5]). For each dimension n ě 3,
there exists an integer dn ě 1 depending only on n such that the following holds. If χ is a
Sarkisov link of type II between Mori conic bundles that arises in an elementary relation
dominated by a rank 3 fibration T {B with dimT “ n then:

1. If dimB ď n´ 2, then cov. gonpχq ď maxtdn, 8 conn. gonpT qu.
2. If dimB “ n ´ 1 and cov. gonpχq ą 1, then the elementary relation has the form

χ4 ˝ χ3 ˝ χ2 ˝ χ “ id, where χ3 is a Sarkisov link of Mori conic bundles of type II
equivalent to χ.
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An elementary relation as in Theorem II.E(2) has one of the three forms shown in
Figure II.5, where the varieties are organized in circles according to their Picard rank
over B [BLZ21, Proof of Proposition 5.5].

Y1

Y2

T 13

T3

T4

T 14

X1

X2
X3

X4

Y 13

Y3

Y4

Y 14

BB̂

E1

E1

E2

E2

G

G

G

G

E2

E1

χ1

χ2

χ3

χ4

Y1

Y2 Y3

Y4

X1

X2 X3

X4

BB̂ B̂1

E1

E2 E2

E1

χ1

χ2

χ3

χ4
Y 11

T 11

Y1

T1

Y2
T2

Y 12

T 12

Y 13

T 13

Y3
T3

Y4

T4

Y 14

T 14

B

X1

X2 X3

X4

χ1

χ2

χ3

χ4
E1

E2

F1 F2

E2

E1

F2F1F1

F1

E2 E2

F2

F2

E1E1

Figure II.5: The elementary relations associated to T {B in Theorem II.E(2), where Ei,
Fi and G are the divisors contracted by the corresponding arrow. In the center, B is not
Q-factorial, and B is Q-factorial in the other two cases.

About the constant dn in Theorem II.E

The constant dn in Theorem II.E comes from a consequence (Proposition II.4.2) of the
Borisov-Alexeev-Borisov conjecture, which was proven by C. Birkar in any dimension.

Proposition II.4.2 ([BLZ21, Proposition 5.1]). Let n be an integer and Q the set of weak
Fano terminal varieties of dimension n. There are integers d, l,m ě 1, depending only on
n, such that for each X P Q, the following hold:

1. dimH0p´mKXq ď l;
2. the linear system | ´mKX | is base-point free;
3. the morphism ϕ : X

|´mKX |
ÝÑ Ph0p´mKXq´1 is birational onto its image and contracts

only curves C Ď X with C ¨KX “ 0;
4. degϕpXq ď d.

Proposition II.4.2 is essentially assembled from [Bir21, Bir19, Kol93]. The dn in The-
orem II.E is the maximum of the d’s from Proposition II.4.2 for dimension 1, 2 . . . , n. Let
us explain this roughly. Let χ : X1 99K X2 be a link of type II appearing in an elementary
relation dominanted by a rank 3 fibration T {B, where X1{B̃, X2{B̃ are Mori conic bun-
dles. Consider the case dimB ă dim B̃ “ n´1. If Γ1 Ă X1 is the base-locus of χ, we need
to show that cov. gonpΓ1q ď maxtdn, 8 conn. gonpT qu. Let us assume that cov. gonpχq ą 1.

Go to nicer rank 2- and 3 fibrations: In the diagram below, π1, π2 are the birational
morphisms from (II.1), where π1 is locally the blow-up of Γ1 by Proposition II.D. The
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conditions on the relative Picard ranks imply that the birational contractions T 99K Yi,
i “ 1, 2, are pseudo-isomorphisms. Then B̃{B is a klt Mori fibre space [BLZ21, Lemma
3.13] and X1{B is a rank 2 fibration [BLZ21, Lemma 3.4(1)]. By Remark II.1.6 there is a
pseudo-isomorphism X1 X over B to a rank 2 fibration X{B with ´KX relatively big
and nef. Since Y1 ÝÑ X1 is locally a blow-up of Γ, X1 X lifts to a pseudo-isomorphism
Y1 Y over B to a rank 3 fibration Y {B [BLZ21, Lemma 2.17]. Again by Remark II.1.6
there is pseudo-isomorphism Y Ŷ over B to a rank 3 fibration Ŷ {B with ´KŶ relatively
big and nef.

Ŷ Y Y1 T Y2

X X1 X2

B̃

B

π1 π2
χ

Let Γ Ă X be the image of Γ1 Ă X1. The induced map Γ1 99K Γ is birational, so it suffices
to show that cov. gonpΓq ď dn. The morphism Γ ÝÑ B is surjective, because otherwise
the image of Γ would be a divisor, which is impossible because fibres of B̃{B are covered
by rational curves [HM07, Corollary 1.5(1)] and cov. gonpΓq “ cov. gonpΓ1q ą 1.

Look at the fibre above a general point: Let Xp, Yp, Ŷp be the fibres above a
general point p P B. Then Xp and Ŷp are weak terminal Fano variety of dimension n0 :“

n ´ dimB P t2, . . . , nu [Kol97, 7.7]. Then Γp :“ Γ XXp is the fibre of Γ ÝÑ B above p,
and the restriction Yp ÝÑ Xp is the blow-up in Γp.

If n0 “ 2, then Yp » Ŷp is a del Pezzo surface and so Γp is the union of at most 8

points. We obtain cov. gonpΓq ď 8 cov. gonpBq ď 8 conn. gonpT q [BLZ21, Lemma 2.22(3)].
If n0 ě 3, we consider the birational morphisms ϕp : Xp ÝÑ Ph0p´mKXp q´1 “ Pa and

Ŷp ÝÑ Ph
0p´mKŶp

q´1
“ Pb from Proposition II.4.2. They are pseudo-isomorphisms because

the locus covered by curves with non-positive intersection against the anticanonical divisor
is of codimension ě 2 by Remark II.1.6. Moreover, b ď a, because Yp ÝÑ Xp is the blow-
up in Γp. So, Γp is not contained in the exceptional locus of ϕp, and ϕp induces a birational
morphism Γp ÝÑ ϕppΓpq. We have a commutative diagram

Xp Yp Ŷp

Pa Pb
|´mKXp | ϕp |´mKYp | |´mKŶp

|
πp

where πp is the projection away from a linear subspace L containing ϕppΓpq. One shows
that all irreducible components of ϕppXpq X L are of dimension ď n0 ´ 2, and that
the ones of dimension n0 ´ 2 have degree ď dn0 , because ϕppXpq is of degree ď dn0 by
Proposition II.4.2. Consider a general linear projection from Pa to a linear subspace of
dimension n0 ´ 2. For any q P ΓpzExpϕpq the preimage of a line through ϕppqq is a curve
of gonality ď dn0 . We have now shown that for a general p P B and any point q in the
open set ΓpzExpϕpq Ă Γ there is a curve in Γp through q of gonality ď dn.

Γ is of covering gonality ď dn: We consider the rational map | ´mKX | ˆ η : X 99K
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PN ˆ B with m as in Proposition II.4.2 for the general fibres of η : X ÝÑ B, whose
restriction to Xp is ϕp. We have found an open subset U Ď ΓzExpϕq that is covered by
curves of gonalityď dn.

III Homomorphisms from and of Cre-
mona groups

When we study a group G we want to know, for instance, whether we can make the group
simpler and perhaps even reduce the study of G to that simpler group. This means we
want to know whether there exists a non-trivial normal subgroup H Ĺ G. Equivalently,
we want to know whether there exist any surjective non-trivial homomorphism from G to
another group. A group that does not have any non-trivial proper normal subgroups is
called simple, since there is no normal subgroup to quotient out in order to get a “simpler”
group. The earliest written evidence (we know of) mentioning this problem for Cremona
groups is in a book by F. Enriques from 1895:

Tuttavia altre questioni d’indole gruppale relative al gruppo Cremona nel piano
(ed a più forte ragione in Sn n ą 2) rimangono ancora insolute; ad esempio
l’importante questione se il gruppo Cremona contenga alcun sottogruppo in-
variante (questione alla quale sembra probabile si debba rispondere negativa-
mente). [Enr95, p. 116]1

Let us elaborate on the known answers in dimension 2 and dimension ě 3.

III.1 Homomorphism from the plane Cremona group

III.1.1 Over an algebraically closed field

Here is a reason why the plane Cremona group over an algebraically closed field k is not
an easy group when it comes to normal subgroups. The Noether-Castelnuovo theorem
[Cas01] states that BirpP2

kq is generated by AutpP2
kq and the involution σ : rx : y : zs ÞÑ

ryz : xz : xys. The smallest normal subgroup of BirpP2
kq containing any of the generators is

in fact the whole group. Indeed, consider the involution h : rx : y : zs ÞÑ rx´ z : y´ z : zs.
Then pσhq3 “ id, so that h “ phσhqσphσhq is a conjugate of σ. Moreover, PGL3pkq is
a simple group, so it follows that the smallest normal subgroup of BirpP2

kq containing σ
(resp. any nontrivial element of AutkpP2q) also contains AutkpP2q (resp. σ) and hence is
equal to the whole of BirpP2

kq.
The non-simplicity of the plane Cremona group was only proven less than a decade

ago. It was shown over k “ C in [CL13] and generalised over any field in [Lon16].
1“However, other group-theoretic questions related to the Cremona group of the plane (and, even more

so, of Pn, n ą 2) remain unsolved; for example, the important question of whether the Cremona group
contains any normal subgroup (a question which seems likely to be answered negatively).”
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Theorem III.1.1 ([CL13, Lon16]). Let k be an arbitrary field. Then BirpP2
kq is not simple.

The normal subgroups N Ă BirpP2
kq constructed in [CL13, Lon16] are large, but also

their quotients are large. For instance, the group of elements of BirpP2
kq preserving the

pencil of lines through r0 : 1 : 0s embeds into BirpP2
kq{N .

For an algebraically closed field k, the fact that the smallest normal subgroup of
BirpP2

kq containing any nontrivial element of tσu Y AutkpP2q is the whole group, implies
that BirpP2

kq does not have any finite quotients.

III.1.2 Over a non-closed perfect field

Contrary to the situation over algebraically closed fields, there are lots of finite quotients
of BirpP2

kq if k is non-closed.
Given a group G “ xS | Ry and some group G1, we can for each s P S define some

element ϕpsq P G1 along with ϕp1q :“ 1. If ϕprq “ 1 for any r P R, then ϕ : G ÝÑ G1 is a
homomorphism. This can be transferred to groupoids. The following homomorphisms from
BirMoripXq or from BirpXq are all constructed with this recipe by using the generators
and generating relations of BirMoripXq by Sarkisov links and elementary relations from
Theorem II.A or Theorem II.3.4.

Theorem III.1.2 ([Zim18a, Theorem 1.1], [Zim18b, Theorem 1.3]). There exists a surjec-
tive homomorphism BirpP2

Rq ÝÑ
À

I Z{2, where I is uncountable. Its kernel is the derived
subgroup of BirpP2

Rq, which is also the smallest normal subgroup containing AutpP2
Rq.

Theorem III.1.2 is proven in [Zim18a] with much dirty work with relations inside
BirpP2

Rq, and it is re-proven more compactly in [Zim18b] by using the list of elementary
relations in BirMoripP2

Rq from Example II.3.2.
Recall from Example II.3.3 that over any perfect field k, Bertini involutions of P2

k do
not appear in any non-trivial relation in BirMoripP2

kq.

Theorem III.A ([LZ20, Theorem C(2)&(3)]). Let k be a perfect field with a Galois
extension of degree 8 and let B Ă BirpP2

kq a set of representatives of Bertini involutions of
P2 up to conjugacy with AutpP2

kq. Then |B| ě |k| and there is a surjective homomorphism

BirpP2
kq ÝÑ ˚

B
Z{2,

which sends each b P B onto the corresponding generator on the right-hand side. In par-
ticular, the abelianisation of BirpP2

kq contains a subgroup isomorphic to
À

B Z{2.

Definition III.1.3. For a terminal Mori fibre space X{B, we define CBpXq to be the
set of equivalence classes of Mori conic bundles birational to X (see §II.4.2). For a given
class C P CBpXq, we define MpCq to be the set of equivalence classes of Sarkisov links of
type II between marked Mori fibre conic bundles pY {B,Γq with C the class of Y {B (see
§II.4.2). By BirpX{Bq Ă BirpXq we denote the subgroups of elements that preserve the
fibration X{B.
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Theorem II.3.4 (or Theorem II.A(1)) give rise to the following quotients of BirMoripXq,
BirpXq and BirpX{Bq.

Theorem III.1.4 ([Sch19, Theorem 3]). Let X be projective surface over a perfect field
k. There exist a groupoid homomorphism

BirMoripXq ÝÑ ˚
CPCBpXq

à

χPMpCq

Z{2

that sends each Sarkisov link χ of type II between Mori conic bundle with cov. gonpχq ě 16

onto the generator indexed by its equivalence class, and all other Sarkisov links and all
automorphisms of Mori fibre spaces birational to X onto zero. Moreover, it restricts to
group homomorphisms

BirpXq ÝÑ ˚
CPCBpXq

à

χPMpCq

Z{2, BirpX{Bq ÝÑ
à

χPMpX{Bq

Z{2.

Definition III.1.5. Let k be a perfect field. We denote by S a del Pezzo surface of degree
6 obtained by blowing up P2 in two points of degree 2 and then contracting the strict
transform of the line through one of them. Let X be the del Pezzo surface of degree 5

obtained by blowing up a point in P2 of degree 4. They both carry a conic bundle structure,
whose fibres are the strict transforms of the conics through the blown-up points.

Lemma III.1.6 ([Sch19, Proposition 6.11, Proposition 6.12]). Let k be a perfect field and
X{P1 a smooth rational Mori conic bundle over k. Then X is isomorphic to a Hirzebruch
surface, to some S or to some X . Moreover, if Y {P1 is a smooth Mori conic bundle and
Y 99K X a birational map to X “ S or X “ X , then Y is isomorphic to X, and it is
constructed by blowing up the same points in P2, up to AutkpP2q.

In particular, the elements of CBpP2q are the classes of F1{P1, S{P1 and X {P1. Let
J6 (resp. J5) parametrise the isomorphism classes of the S{P1 (resp. X {P1). The follow-
ing quotient is obtained by composing the quotient in Theorem III.1.4 with a suitable
projection.

Theorem III.1.7 ([Sch19, Theorem 4]). Let k be a perfect field with rk̄ : ks ą 2. There
exists a surjective homomorphism

BirpP2
kq ÝÑ

à

I0

Z{2 ˚ p˚
J6

à

I

Z{2q ˚ p˚
J5

à

I

Z{2q

where I0 ĂMpF1q is infinite and I is at least as big as the set of irreducible polynomials in
krxs of odd degree. In particular, there is a surjective homomorphisms BirpP2

Qq ÝÑ ˚N Z{2
and for any finite field k there is a surjective homomorphism BirpP2

kq ÝÑ Z{2 ˚Z{2 ˚Z{2.

We dont know the kernel of this homomorphism, but for instance, by construction it
contains all Bertini type links of P2.
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III.1.3 The homomorphism given by factorisation centers

It is not so easy to construct explicitly a non-trivial homomorphism starting from the plane
Cremona group. An intuitive idea is the following. Let k be a perfect field and ϕ : X 99K Y
a birational map of smooth projective surfaces over k. We have a decomposition

X̃

X Y

α β

ϕ

with α and β compositions of blow-ups of closed points p1, . . . , pr and p11, . . . , p
1
s, re-

spectively. We define Var0
{k to be the set of isomorphism classes of irreducible zero-

dimensional varieties over k, and ZrVar0
{ks to be the Z-module generated by Var0

{k.
The ring ZrVar0

{ks is isomorphic to the Burnside ring of Galpk{kq. The factorisation
center of ϕ is defined as

cpϕq :“
r
ÿ

i“1

rpis ´
ÿ

rp1is P ZrVar0
{ks

It does not depend on the choice of factorisation of ϕ and defines a homomorphism c from
the groupoid of birational maps between smooth projective surfaces Bir2 {k to ZrVar0

{ks

[LSZ20, Lemma 3.1]. Moreover, it restricts to a homomorphism of groups

c : BirpXq ÝÑ ZrVar0
{ks.

If Z is a finite union of closed points in a smooth surface X, and Y ÝÑ X its blow-
up, the action of Galpk{kq on Zk induces a permutation representation of Galpk{kq on
PicpYkq bQ. The following example shows that this permutation representation does not
determine the isomorphism class of Z.

Example III.1.8 ([LSZ20, Example 2.14], based on [Par13, §1.1]). Let k “ Q and let
Z be the union of the three points r˘

?
α : 1 : 0s, r0 : ˘

?
β : 1s, r1 : 0 : ˘

?
αβs in

P2
Q and Z 1 union of the points r˘

?
α : ˘

?
β : 1s, r1 : 0 : 1s, r0 : 1 : 1s in P2

Q. Let Y
and Y 1 be the blow-up of Z and Z 1, respectively. They are not isomorphic, because Y
contains only three k-rational p´1q-curves and Y 1 contains five. On the other hand, we
have PicpYQq bQ » PicpY 1Qq bQ as permutation representations of GalpQ{Qq.

However, if Z is of degree ď 5, or if Z is irreducible and of degree ď 6, or if Z is
irreducible and its splitting field is cyclic or Galois over k, then permutation presentation
PicpYkq bQ of Galpk{kq determines the isomorphism class of Z [LSZ20, Corollary 2.13].

The following statement is immediate if k is algebraically closed, k “ R or k is finite.

Theorem III.B ([LSZ20, Theorem 3.4]). Let k be a perfect field. For any two smooth
projective surfaces X, Y over k, any two birational isomorphism ϕ, ψ : X 99K Y have
cpϕq “ cpψq. In particular, the homomorphism c : BirpXq ÝÑ ZrVar0

{ks is trivial.

For k “ R the second statement also frollows from Theorem III.1.2, because it implies
that any homomorphism BirpP2

Rq ÝÑ Z must be trivial.
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To show Theorem III.B for geometrically irreducible surfaces, it suffices to study bi-
rational maps ϕ : X 99K X 1 between outputs of K-MMPs. If KX is nef, then KX 1 is nef
and ϕ is an automorphism [IS96, Corollary 1 in II.7.3], so cpϕq “ 0. If X,X 1 are Mori
fibre spaces that are geometrically non-rational, then cpϕq “ 0 [Sch19, Lemma 3.3]. If X
is a minimal del Pezzo surface of degree ď 4, it follows from the classification of Sarkisov
links in [Isk96, Theorem 2.6] that cpϕq “ 0.

For del Pezzo surfaces Xd of degree d ě 5 and Hirzebruch surfaces, we define elements
of ZrVar0

{ks as follows, where Zi has i geometric components but is not necessarily
irreducible.

• AFn :“ 2rSpecpkqs, n ě 1,
• AX9 :“ rSpecpkqs,
• AX8 :“ rZ2s where Z2 parametrises the rulings of pX8qk and X8 is minimal,
• AX6 :“ rZ2s` rZ3s´ rSpecpkqs, where Z3 parametrises the three pencils of conics on
pX6qk, and Z2 parametrises two families on pX6qk: the strict transforms of general
lines in P2

k
and of the conics in P2

k
through three points,

• AX5 :“ rZ5s, where Z5 parametrises the five pencils of conics in pX5qk.

Proposition III.C ([LSZ20, Proposition 5.5]). Let X be a del Pezzo surface of degree
ě 5 or a Hirzebruch surface, and ϕ : X 99K X 1 a birational map to the outcome of some
K-MMP. Then X 1 is a del Pezzo surface of degree ě 5 or a Hirzebruch surface, and
cpϕq “ AX 1 ´ AX .

Proposition III.C concludes the proof of Theorem III.B for geometrically irreducible
surfaces. A geometrically reducible surface X can be viewed as geometrically irreducible
over the field of regular functions of X, which is a finite extension of k.

The following corollary from Theorem III.B and Proposition III.C tells us that for any
rational smooth projective surface X, any birational maps P2 99K X must factor through
the blow-ups or blow-downs of some special points associated to X.

Corollary III.D ([LSZ20, Corollary 5.9]). There is a unique map

tIsomorphism classes of rational smooth projective surfacesu M
ÝÑ ZrVar0

{ks

such that for any birational map ϕ : P2 99K X we have MpXq :“ cpϕq ` 1. We have
MpXq “ AX for a minimal del Pezzo surface X of degree ě 5 and for X “ Fn, n ě 1.

E. Shinder and H.-Y. Lin have announced that the analogously defined homomor-
phism starting from BirpP3

Cq is trivial as well, but that for the homomorphism starting
from BirpPnCq is non-trivial if n ě 4, as well as for the homomorphism starting from BirpP3

kq

over some non-closed field k [LS].

III.2 Homomorphisms from Cremona groups in dimen-
sion ě 3

We are working over the field C. The following results establish the existence of non-
trivial homomorphisms of groups starting from BirpXq for some large families of varieties
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X. Some results can be formulated over subfields k of C, simply by restricting the homo-
morphism to the subgroup of birational maps already defined over k.

III.2.1 Using elementary relations among Bertini type links

Let X1{B be a Mori fibre space with dimX1 “ 3 and B a curve. A type link χ : X1 99K X2

over B and a Bertini type link χ1 : X 1
1 99K X

1
2 over B1 are equivalent, if there are birational

maps ψ : X1 99K X 1
1 and ψ1 : X2 99K X 1

2 such that ψ1 ˝ χ “ χ1 ˝ ψ and that induce the
same isomorphism B ÝÑ B1. The description of the elementary relations among Bertini
type links from Proposition II.4.1 yield the following generalisation of Proposition III.A
to dimension 3.

Theorem III.2.1 ([BY20, Theorem D]). There exists an integer g ě 0 such that for any
rank 1 fibration X{B of dimX “ 3 over a curve B, there exists a group homomorphism

BirpXq ÝÑ ˚
I
Z{2

which is the restriction of a groupoid homomorphism BirMoripXq ÝÑ ˚I Z{2 that sends
every Sarkisov link χ of Bertini type with gpχq ě g (see §II.4.1 for the definition of
gpχq) to the generator indexed by its equivalence class, and all other Sarkisov links and
all automorphism of Mori fibre spaces birational to X onto the trivial element.

Theorem III.2.1 applies in particular to any threefold del Pezzo fibration X{B of
degree 3 above a curve, and J. Blanc and E. Yasinsky show that after cutting off some
factors, the induced homomorphism BirpXq ÝÑ ˚N Z{2 is surjective [BY20, Theorem A].

III.2.2 Using elementary relations among Mori conic bundles

Recall from Definition III.1.3 that CBpXq denotes the set of equivalence classes of Mori
conic bundles and for C P CBpXq, we denote by MpCq the set of equivalence classes of
Sarkisov links of type II between marked Mori conic bundles.

We have the following higher dimensional analogues of Theorem III.1.4 and Theo-
rem III.1.7.

Theorem III.E ([BLZ21, Theorem D]). Let n ě 3. There exists an integer dn ą 1

depending only on n such that for every terminal Mori conic bundle X{B of dimension
n, we have a groupoid homomorphism

BirMoripXq ÝÑ ˚
CPCBpXq

˜

à

χPMpCq

Z{2

¸

that sends each Sarkiso link of Mori conic bundles χ of type II with cov. gonpχq ą

maxtdn, 8 conn. gonpXqu onto the generator indexed by its equivalence class, and all other
Sarkisov links and all automorphisms of Mori fibre spaces birational to X onto zero. More-
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over, it restricts to group homomorphisms

BirpXq ÝÑ ˚

˜

à

CPMpCq

Z{2

¸

, BirpX{Bq ÝÑ
à

MpX{Bq

Z{2.

The homomorphisms in the following statements are compositions of the homomor-
phisms in Theorem III.E with a suitable projection.

The following example and proposition show that if X is birational to a special conic
fibration, the above homomorphism is non-trivial and its image is large.

Example III.2.2 ([BLZ21, Lemma 6.5]). Let B be a smooth variety of dimension at
least 2, X “ P1 ˆB, and let ϕM P BirpX{Bq » PGL2pCpBqq be the birational map

ϕM : pru : vs, tq Þ99K praptqu` bptqv : cptqu` dptqvs, tq, ad´ bc ‰ 0.

Then the image of ϕM under the group homomorphism BirpX{Bq ÝÑ
À

MpX{Bq Z{2
of Theorem III.E is equal to the sum of the equivalence classes of marked conic bun-
dles pX{B,Γq such that Γ Ă B is an irreducible hypersurface of B with cov. gonpΓq ą

maxtd, 8 conn. gonpXqu and such that the multiplicity of ad´ bc along Γ is odd.

Definition III.2.3. A decomposable P2-bundle P is the projectivisation of a decomposable
rank 3 vector bundle, i.e. P “ PpOPm ‘OPmpaq‘OPmpbqq for some a, b P Z. A Mori conic
bundle X{B is called decomposable if we have closed embeddings B ãÑ Pm and X ãÑ P ,
where P is a decomposable P2-bundle over Pm, such that the morphism X{B is the
restrition of the P2-bundle morphism P ÝÑ Pm and such that X Ă P is locally given by
equations of degree 2 in the P2-bundle.

Theorem III.F ([BLZ21, Theorem B]). Let B Ď Pm be a smooth projective complex
variety, P ÝÑ Pm a decomposable P2-bundle and X Ă P a smooth closed subvariety
such that the projection to Pm induces a conic bundle η : X ÝÑ B. Then there exists a
homomorphism BirpXq ÝÑ

À

Z Z{2 whose restriction to BirpX{Bq is surjective.

Theorem III.F applies for instance to any smooth cubic X hypersurface of Pn, n ě 4,
as the blow-up of X in a line carries a decomposable Mori conic bundle structure.

The set CBpPnq of equivalence classes of Mori conic bundles is very large, which allows
to construct the following homomorphism.

Theorem III.G ([BLZ21, Proposition 7.15, Theorem E]). For each n ě 3, there is an
uncountable set J indexing decomposable conic bundles Xi{Bi, where Xi, Bi are rational
smooth varieties such that two conic bundles Xi{Bi and Xj{Bj are equivalent if and only
if i “ j. Moreover, there is a surjective homomorphism BirpPnCq ÝÑ ˚J Z{2 that admits a
section. In particular, BirpPnCq is a semi-direct product with one factor being a free product.

In particular, every group generated by an uncoutable set of involutions is a quotient
of BirpPnCq, n ě 3.

Every smooth cubic threefoldX Ă P4 is non-rational, and moreover two such cubics are
birational if and only if they are equal up to an element of AutpP4q “ PGL5pCq [CG72].
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Similarly to Theorem III.G, for a general smooth cubic threefold there is a surjective
homomorphism BirpXq ÝÑ ˚J Z{2 with uncountable indexing set J [BLZ21, Proposition
8.9].

III.3 Continuous automorphisms of Cremona groups

In this section, we change our focus from homomorphism from a Cremona group to a
product of sums of Z{2 to group homomorphisms from a Cremona group to itself.

Let k be an arbitrary field. Every field automorphism α of k naturally induces a
group automorphism on both, BirpPnkq and AutpPnkq » PGLn`1pkq, which we denote by
g ÞÑ αg. The group automorphisms of PGLn`1pkq are well-known: every automorphism of
PGLn`1pkq is the composition of an inner automorphism with an automorphism of the
form g ÞÑ αg or g ÞÑ αg_, where α is a field automorphism of k and g_ denotes the inverse
of the transpose of g [Die71, IV.§1.I–III, p.85–89 and IV.§6, p.98]. Not all automorphisms
of PGLn`1pkq extend to BirpPnkq:

Lemma III.3.1 ([Ure18, Corollary A.12]). For any field k and any field homomorphism
α of k, the automorphism of PGLn`1pkq given by g ÞÑ αg_ does not extend to BirpPnkq.

The other automorphisms of PGLn`1pkq do extend and in fact, any automorphism of
BirpP2

Cq is of this form, up to conjugacy:

Theorem III.3.2 ([Dés06b, Theorem 0.1]). Let ϕ be an automorphism of the group
BirpP2

Cq. Then there exists f P BirpP2
Cq and an automorphism α of the field C such that

ϕpgq “ fpαgqf´1 for all g P BirpP2
Cq.

Up to date it is unknown whether Theorem III.3.2 also holds for BirpPnCq, n ě 3.
Note that all automorphism of PGLn`1pkq are continuous with respect to the Zariski

topology.
Cremona groups carry the so-called Zariski topology, which was introduced by M.

Demazure in [Dem70]. Let X,A irreducible algebraic varieties defined over k. Consider
a birational map f : AˆX 99K AˆX inducing an isomorphism between open dense subsets
U, V Ă A ˆ X such that the restriction of the first projection to U and V is surjective
onto A. Every a P Apkq induces a birational map fa : X 99K X, x Þ99K p2pfpa, xqq, where
p2 : AˆX ÝÑ X is the second projection. The map from Apkq to BirpXq given by a ÞÑ fa
is called a morphism (or k-morphism) from A to BirpXq, and is denoted by A ÝÑ BirpXq.
The Zariski topology is now the finest topology such that the preimages of closed subsets
by morphisms are closed: A subset F Ă BirpXq is closed in the Zariski topology if for any
algebraic k-variety A and any k-morphism A ÝÑ BirpXq the preimage of F is closed in
Apkq.

We denote by BirpPnkqďd the set of Cremona transformations of degree ď d. J. Blanc
and J.-P. Furter show in [BF13] that the restriction of the Zariksi topology to AutpPnkq “
BirpPnkq1 is the usual Zariski topology, and provide an equivalent definition of the Zariski
topology, in which the sets BirpPnkqďd are topological quotients of quasi-projective algebraic
varieties given by the coefficients of the birational maps in BirpPnkqďd. The sets BirpPnkqďd
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are moreover closed in the Zariski topology. It turns out that the Zariski topology on the
Cremona groups is the inductive limit topology of the family BirpPnkqďd, d ě 1. While for
each d ě 1, the set BirpPnkqd of Cremona transformations of degree d carries the structure
of a variety, the sets BirpPnkqďd, d ě 2, do not carry the structure of a variety. In fact,
there is no ind-structure on BirpPnkq such that morphisms A ÝÑ BirpPnkq are morphisms
of algebraic varieties [BF13, Theorem 1].

Theorem III.3.2 implies that every group automorphism of BirpP2
Cq is Zariski continu-

ous. It is unknown whether every group automorphism of BirpPnkq is Zariski continuous for
n ą 2 or k ‰ C. The following proposition shows that Zariski-continuous endomorphism
of BirpPnkq are completely determined by their restriction to AutkpPnq.

Let AutpAn
kq be the group of polynomial automorphisms of the affine space, and by

AffpAn
kq Ă AutpAn

kq we denote the subgroup of affine automorphisms. The Zariski topology
on AutpAn

kq is the induced topology of the Zariski topology on BirpPnkq.

Proposition III.H ([UZ21, Proposition 3.4, Proposition 3.5]). Let k be an infinite field.
1. Let ϕ : BirpPnkq ÝÑ BirpPnkq be a group endomorphism which is Zariski continuous.

If ϕ|AutkpPnq “ idAutkpPnq, then ϕ “ idBirpPn
kq
.

2. Let ϕ : AutpAn
kq ÝÑ AutpAn

kq be an endomorphism which is Zariski continuous. If
ϕ|AffpAn

kq
“ idAffpAn

kq
, then ϕ “ idAutpAn

kq
.

Using Proposition III.H, we get a generalisation of Theorem III.3.2, but with the
additional restriction that the automorphisms are homeomorphisms with respect to the
Zariski topology.

Theorem III.I ([UZ21, Theorem 1.1, Theorem 1.3]). Let k be a field of characteristic 0

and let ϕ : BirpPnkq ÝÑ BirpPnkq be a group automorphism that is a homeomorphism with
respect to the Zariski topology, where n ě 2. Then there exists a field automorphism α of
k and an element f P BirpPnkq such that ϕpgq “ f pαgqf´1 for all g P BirpPnkq.

The same statement holds for AutpAn
kq if k is infinite and perfect.

Theorem III.I implies that if k does not have any non-trivial field automorphisms
(for instance, if k “ Q or k “ R), then every automorphisms of BirpPnkq that is Zariski
continuous is inner.

The main ingredients of the proof of Theorem III.I on BirpPnkq is a result of S. Cantat
and J. Xie:

Theorem III.3.3 ([CX18, Theorem A, Corollary 8.5]). Let Γ of SLn`1pZq be a finite index
subgroup, n ě 2, and X an irreducible complex quasi-projective variety of dimension n.

1. Given an injective group homomorphism ϕ : Γ ãÑ BirpXq, there exists a birational
map f : X 99K PnC such that fϕpΓqf´1 Ă AutCpPnq.

2. Given an injective group homomorphism ϕ : Γ ãÑ AutpXq, there exist an isomor-
phism f : X ÝÑ Pn such that fϕpΓqf´1 Ă AutCpPnq.

This result allows us to show that up to conjugation by a suitable birational map,
any continuous automorphism ϕ of BirpPnkq maps AutpPnkq into itself [UZ21, Proposition
4.6]. Theorem III.I then follows from the classification of the automorphisms of AutkpPnq,
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Lemma III.3.1 and Proposition III.H. The proof of Theorem III.I on AutpAn
kq is less

straight forward, but does not use a result as strong as Theorem III.3.3. We show that
up to conjugation with an automorphism of An

k, any automorphism of AutpAn
kq that is

a homeomorphism with respect to the Zariski topology sends GLnpkq to itself. We then
show that, again after conjugating with a suitable element of AutpAn

kq, it sends AffpAn
kq

to itself. The claim then follows with Proposition III.H.
In this setting, Theorem III.3.2 and Theorem III.I can be seen as an algebraic analogues

of [Fil82], where it is shown that all group automorphisms of diffeomorphism groups are
inner.

The group AutpAn
kq has the additional structure of an ind-group (see [FK18] for de-

tails). Theorem III.I implies in particular that every ind-group automorphism of AutpAn
kq

is inner, if k is an infinite perfect field. In the case where k is of characteristic zero
and algebraically closed, this was proven by A. Kanel-Belov, J.-T. Yu, and A. Eli-
shev in [KBYE18]. Again, one can ask, whether all group automorphisms of AutpAn

kq are
Zariski continuous. In dimension 2, the question has a positive answer if k is uncountable
[Dés06a]. A partial generalisation of [Dés06a] to higher dimensions has been obtained in
[KS13], [Sta13], [Ure13]. In general, for n ě 3 it is an open problem whether all group
automorphisms of AutpAn

kq are inner up to field automorphisms.

A local field k is a field endowed with a locally compact topology that is non-discrete.
Any local field is C, R, a finite extension of the p-adic numbers Qp or the field of formal
Laurent series over a finite field [Mil, Remark 7.49]. In [BF13, §5], J. Blanc and F.
Furter define a natural refinement of the Zariski topology on Cremona groups over
a local field k, namely the Euclidean topology, in which the BirpPnkqďd are topological
quotients of manifolds given by the coefficients of its the birational maps in BirpPnqďd.
The induced topology on AutkpPnq is the usual Euclidean topology, and it makes BirpPnkq
a Hausdorff topological group which is not metrisable. Moreover, any compact subset of
BirpPnkq is of bounded degree [BF13, §5].

Proposition III.H(1) also holds in the Euclidean topology over any local field, and
Theorem III.I on BirpPnkq holds for k “ C and k “ R [UZ21, Theorem 1.2, Proposition 3.4].
Its proof requires k to be archimedean and we did not find a proof over non-archimedean
local fields.

IV Structures of Cremona groups
There are many beautiful structure theorems for the plane Cremona group over an al-
gebraically closed field. For a selection of results, see for instance [UZ19]. Notably, the
following is known:

Theorem IV.0.1 ([CL13, Corollary A.2]). If k is algebraically closed, then BirpP2
kq is

not isomorphic to a non-trivial free product of groups amalgamated along their common
intersection
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The plane Cremona group comes close to being an amalgam. Let J˚ Ă BirpP2
kq be the

subgroup of elements preserving the pencil of lines through a point.

Theorem IV.0.2 ([Bla12]). BirpP2
kq is the amalgamated product of J˚ and AutpP2

kq mod-
ulo the relation σ ˝ τ “ τ ˝ σ, where σ is the standard quadratic transformation and
τ P AutpP2

kq the transposition τ : rx : y : zs ÞÑ ry : x : zs.

The plane Cremona group is a generalised amalgamated product.

Theorem IV.0.3 ([Wri92, Theorem 3.13]). If k is algebraically closed, then BirpP2
kq

is the free product of AutpP2
kq, AutpP1

k ˆ P1
kq and J˚ amalgamated along their pairwise

intersections in BirpP2
kq.

In this section we will explain that the Cremona groups in dimension 2 over non-closed
fields and in dimension ě 3 are indeed non-trivial amalgams of two groups. The structure
theorems appearing in this section are related to the non-trivial homomorphism of groups
in §III.1 and §III.2.

IV.1 Plane Cremona groups over a non-closed perfect
field

A field k that is not algebraically closed but whose algebraic closure k is a finite extension
of k, is called real closed field. It satisfies rk : ks “ 2 and is of characteristic zero by [AS27,
Satz 4]. Let S be the del Pezzo surface obtained by blowing up two points of degree 2 in
P2 and contracting the strict transform of the line through one of them. It carries a Mori
conic bundle structure S{P1 given by the conics through the two points.

Consider a Sarkisov link S 99K S of type II over P1 whose base-locus is a point of
degree 2 not contained in the exceptional double section of S{P1. It is conjuguate to a
birational map of P2 of degre 5 not defined at three points of degree 2 that contracts six
k-conics, and which is called standard quintic transformation.

We have the following generating set of BirpP2
kq of bounded degree.

Theorem IV.1.1 ([BM14, Theorem 1.2]). Let k be a real closed field. The group BirpP2
kq

is generated by AutpP2
kq, the two quadratic involutions σ : rx : y : zs Þ99K ryz : xz : xys and

τ : rx : y : zs Þ99K rxz : yz : x2 ` y2s, and the set of standard quintic transformations.

Theorem IV.1.1 is proven by J. Blanc and F. Mangolte in [BM14, Theorem 1.2] for
k “ R. Its proof relies on the classification of rational Mori fibre spaces and Sarkisov links
between them. The classification is the same over any real closed field by Proposition V.B
and Lemma III.1.6, because a real closed field has a unique non-trivial finite field exten-
sion, which is quadratic. The group BirpS{P1q is conjugate to the group J˝ Ă BirpP2

kq of
elements preserving the pencil of conics through two fixed points of degree 2 in P2 whose
geometric components are in general position. It contains a conjugate of τ and a conju-
gate of each standard quintic transformation. The group BirpF1{P1q is conjugate to the
subgroup J˚ Ă BirpP2

kq of elements preserving the pencil of lines through a fixed rational
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point. It contains a conjugate of τ and of σ. As consequence of Theorem IV.1.1, BirpP2
kq

is generated by AutpP2
kq, J˚ and J˝. This is also the generating set of BirpP2

kq constructed
in [Isk91], if considered over a real closed field.

Using the list of elementary relations of Sarkisov links in BirMoripP2
kq over a real

closed field k, see Example II.3.2, one shows that BirpP2
kq is a free product of two groups

amalgamated along their common intersection - contrary to the situation over C.

Theorem IV.A ([Zim18b, Theorem 1.1]). Let k be a real closed field. Then BirpP2
kq is

the free product of the groups G˚ :“ xJ˚,AutpP2
kqy and G˝ :“ xJ˝,AutpP2

kqy amalgamated
along their intersection G˚ X G˝, which is equal to the group xAutpP2

kq, τy. Moreover, both
G˚ and G˝ have uncountable index.

Let k be an arbitrary perfect field and let B Ă BirpP2
kq a set of representatives of Bertini

involutions up to conjugacy with AutpP2
kq. For each b P B, define Gb :“ xb,AutpP2

kqy. We
denote byGe Ă BirpP2

kq the subgroup generated by AutpP2
kq and the conjugates of Sarkisov

links between rational Mori fibre spaces of dimension 2 that are not conjugate to Bertini
links from P2 to P2. This is well defined, as Bertini links between P2 are not conjugate
to any other Sarkisov links, because they do not appear in any non-trivial elementary
relation, see Example II.3.3.

Theorem IV.B ([LZ20, Theorem A, Corollary B, Theorem C]). Let k be a perfect field
with a Galois extension of degree 8, and consider the groups Gi, i P B Y teu, as defined
above.

1. Then Gi X Gj “ AutpP2
kq for all i ‰ j and the Cremona group is the amalga-

mated product of the Gi along their common intersection BirpP2
kq » ˚AutpP2

kq
Gi, and

BirpP2
kq acts faithfully on the corresponding Basse-Serre tree.

2. Let GB “ xAutpP2
kq,By. Then GBXGe “ AutpP2

kq and the Cremona group is isomor-
phic to the amalgamated product BirpP2

kq » GB ˚AutpP2
kq
Ge, and BirpP2

kq acts faithfully
on its Bass-Serre tree.

3. For each b P B, we have Gb » AutpP2
kq ˚ Z{2, and we can write the Cremona group

as free product BirpP2
kq » Ge ˚ p˚B Z{2q.

We obtain Theorem III.A as corollary of Theorem IV.B.

For a perfect field k and a Mori fibre space X over k of dimX “ 2 we denote by ρ the
group homomorphism

ρ : BirpXq ÝÑ ˚
CPCBpXq

à

MpCq

Z{2

from Theorem III.1.4. For each C P CBpXq we fix a choice of representative XC{BC , and
we define GC :“ ρ´1pρpBirpXC{BCqqq Ď BirpXq. The following result is a consequence of
Theorem III.1.4 and Theorem III.1.7.

Theorem IV.1.2. Let k be a perfect field with rk : ks ą 2 and let X{B be a smooth Mori
conic bundle over k of dimension dimX “ 2. Then, the following hold:

1. For all C ‰ C 1 in CBpXq, the group A “ GC X GC1 contains ker ρ and does not
depend on the choice of C and C 1.
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2. The group BirpXq “ ˚AGC is the free product of the groups GC, C P CBpXq,
amalgamated over their common intersection A.

3. BirpP2
kq is the free product of GF1, the GS and the GX , amalgamated along their

common intersection A, and the product is non-trivial.

Proof. (1)&(2) are analogous to the proof of Theorem IV.C, see [BLZ21, Theorem 8.6],
by Theorem III.1.4. (3) By Lemma III.1.6, CBpP2q consists of the class of F1{P1, and
the classes of the form S{P1 and X {P1. We have A Ĺ GF1 , GS , GX Ĺ BirpPnkq by Theo-
rem III.1.7, so the amalgamated product is non-trivial.

Note that there may be countably many classes of the form S{P1 and X {P1, so the
amalgamated product may have countably many factors. It is not clear that A “ ker ρ in
Theorem IV.1.2, because some elements of

À

MCpCq Z{2 may be in the image of BirpXq

but not in the image of BirpX{Bq.

IV.2 Cremona groups in higher dimension

Contrary to n “ 2 and k “ C, and analogously to n “ 2 and k a non-closed perfect field,
the Cremona group in higher dimension is a free product of groups amalgamated over
their common intersection.

For a terminal variety X of dimension n ě 3, an element C of CBpXq is called
decomposable if it is the class of a decomposable conic bundle (Definition III.2.3). We
denote by ρ the group homomorphism

ρ : BirpXq ÝÑ ˚
CPCBpXq

à

MpCq

Z{2

from Theorem III.E. For each C P CBpXq we fix a choice of representative XC{BC , and
we denote GC “ ρ´1pρpBirpXC{BCqqq Ď BirpXq.

Theorem IV.C ([BLZ21, Proposition 8.6]). For each n ě 3, and let X{B be a conic
bundle, where X is a terminal variety of dimension n. Then, the following hold:

1. For all C ‰ C 1 in CBpXq, the group A “ GC X GC1 contains ker ρ and does not
depend on the choice of C and C 1;

2. The group BirpXq “ ˚AGC is the free product of the groups GC, C P CBpXq,
amalgamated over their common intersection A.

3. For each decomposable C P CBpXq we have A Ĺ GC. Moreover, the free product of
(2) is non-trivial pi.e. A Ĺ GC Ĺ BirpXq for each Cq as soon as CBpXq contains
two distinct decomposable elements.

Again, it is not clear that A “ ker ρ. Theorem IV.C applies in particular when X

is rational, as CBpXq then contains uncountably many decomposable elements by Theo-
rem III.G.

A classical result, due to H. Hudson and I. Pan [Hud27, Pan99], says that for n ě 3

and k “ C, the group BirpPnq is not generated by any set of elements of BirpPnq of
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bounded degree. Indeed, for each irreducible hypersurface Γ Ă Pn´1, pick a homogeneous
irreducible polynomial p P krx2, . . . , xns that defines Γ. The birational

fp : px1, . . . , xnq 99K px1ppx2, . . . , xnq, x2, . . . , xnq

contracts a hypersurface birational to P1 ˆ Γ onto t0u ˆ Γ. So, to generate the Cremona
group we need at least one generator for each birational class of irreducible hypersurfaces
of Pn´1. The map fp preserves a family of hyperplanes through r0 : 1 : ¨ ¨ ¨ : 0s. The set
of elements of BirpPnq preserving a family through a given point forms a group isomor-
phic to PGL2pCpx2, . . . , xnqq ¸ BirpPn´1q, and its elements are called Jonquières. It is a
natural question whether the group BirpPnq is generated by AutpPnq and by Jonquières
elements (asked in [PS15], for instance). The answer to the question is negative, just like in
dimension n “ 2 over a non-closed perfect field (see Theorem III.1.2 and Theorem III.1.7).

Theorem IV.D ([BLZ21, Theorem C]). Let n ě 3. Let S be a set of elements in the
Cremona group BirpPnq that has cardinality strictly smaller than |C|, and let G Ď BirpPnq
be the subgroup generated by AutpPnq, all Jonquières elements and S. Then G is contained
in the kernel of a surjective group homomorphism BirpPnq ÝÑ Z{2. In particular, G is a
proper subgroup of BirpPnq, and the same is true for the normal subgroup generated by G.

Using Theorem III.2.1, J. Blanc and E. Yasinksy prove a stronger statement for
n “ 3. They show that the subgroup G Ă BirpP3

Cq generated by all elements preserving
a fibration P3

C 99K P2
C whose general fibres are rational, is in fact a strict subgroup of

BirpP3
Cq [BY20, Theorem B]. As consequence, they show that the subgroup of BirpP3

Cq

generated by all connected algebraic subgroups of BirpP3
Cq is a strict normal subgroup of

BirpP3
Cq [BY20, Theorem C].

V Algebraic subgroups of the plane Cre-
mona group

The classification of algebraic groups acting on P2
k up to conjugacy is open over many

fields, because classifying finite groups acting birationally on P2
k is very hard. There are

several classifiction results for finite and abelian groups [BB00, BB04, Bla07, DI09b,
Bla09a], and the classification had been completed over algebraically closed fields in the
works of J. Blanc, and I. Dolgachev and V.A. Iskovskikh. Over non-closed fields,
only partial classifications exist, and they can be found in [DI09a, Rob16, Yas16, Yas19].

The classification of infinite algebraic groups acting birationally on P2
C up to conjugacy

and up to inclusion has been achieved in [Bla09b], and k “ R it can be found in [RZ18].
In higher dimension, the connected algebraic groups acting birationally on P3

C have been
classified up to conjugation and inclusion by H. Umemura in [Ume80, Ume82a, Ume82b,
Ume85]. The classification has been recovered and extended to closed fields of characteris-
tic zero in [BFT17, BFT19] by J. Blanc, A. Fanelli and R. Terpereau in a different
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approach using the MMP. An attack in dimension 4 has been started in [BF20] by J.
Blanc and E. Floris.

We present here the classification of the infinite algebraic groups acting birationally
on a rational smooth projective surface over a perfect field k up to conjugation and up to
inclusion.

It will turns out that any algebraic group acting birationally on P2
k acts regularly on

a rational smooth projective surface X that is either a del Pezzo surface of degree ě 6

or a special conic fibration, see Proposition V.A and Theorem V.H. The automorphism
groups of these surfaces affine algebraic groups, and this reduces the classification problem
to the task of classifying these surfaces X, and classify their automorphism groups up
to conjugation by birational maps. An equivariant version of Theorem II.1.10(1), see
[Zim18b, §7.1], tells us that it is enough to study AutkpXq-equivariant Sarkisov links
starting from X and list all possible options to go equivariantly from one such surface
X to another. It turns out that equivariant Sarkisov links only exist for very special X,
which we specify in Theorem V.I.

Throughout this chapter, the base field k is a perfect field.

V.1 Birational group actions

We say that an algebraic group G acts birationally on a variety X if there are open dense
subsets U, V Ă GˆX and a birational map

GˆX 99K GˆX, pg, xq Þ99K pg, ρpg, xqq

restricting to a isomorphism U
»
Ñ V and the projection of U and V to the first factor

is surjective onto G, and ρpe, ¨q “ idX and ρpgh, xq “ ρpg, ρph, xqq for any g, h P G and
x P X such that ρph, xq, ρpgh, xq and ρpg, ρph, xqq are well defined. This is equivalent
to saying that there is a morphism G ÝÑ BirpXq (see §III.3), such that the induced
map Gpkq ÝÑ BirpXq, g ÞÑ ρpg, ¨q, is a homomorphism of groups. If the birational map
GˆX 99K GˆX above is an isomorphism, we say that X is a G-variety.

For a projective surface X, we denote by AutkpXq the group of k-automorphisms of
X, which is the group of k-rational points of a group scheme AutpXq that is locally of
finite type over k [Bri17b, Theorem 7.1.1]. If X is a G-surface, then Gpkq Q g ÞÑ ρpg, ¨q

induces a homomorphism of groups Gpkq ÝÑ AutkpXq.
Any algebraic group acting birationally on P2 is an affine algebraic group [BF13, §2.6],

and so the next proposition allows us to restrict to studying rational G-surfaces. It was
proven separately by A. Weil and M. Rosenlicht in [Wei55, Ros56], but neither of
them needed the new model to be smooth nor projective. The proof of the first part of
the following statement was communicated to us by M. Brion, and it holds over any
(not necessarily perfect) field.

Proposition V.1.1. Let X be a smooth projective surface and G an affine algebraic group
acting birationally on X. Then there exists a G-surface Y and a G-equivariant birational
map X 99K Y . Furthermore, Gpkq has finite action on NSpY q.
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Proof. By [Wei55, Ros56], there exists a normal G-surface Y 1 and a G-equivariant mor-
phism X 99K Y 1. The set Y 2 of smooth points of Y 1 is G-stable, it is contained in
a complete surface, which can be desingularised [Lip78], so Y 1 is quasi-projective. By
[Bri17a, Corollary 2.14], Y 1 has a G-equivariant completion Y 2. We now desingularise Y 2

G-equivariantly and obtain the smooth projective surface Y [Zar39, Lip69] (the sequence
of blow-ups and normalisations over k can be done G-equivariantly).

The second claim is classical and for instance shown in [RZ18, Lemma 2.10] over any
perfect field.

We can now replace P2 with a suitable rational smooth projective G-surface X. More-
over, after quotienting out the schematic kernel of the G-action, we can assume that the
action is faithul.

We can view the G-action on X as pGkˆGalpk{kqq-action on Xk. It is a finite action,
so we can start the G-equivariant MMP from X over k. This means that we successively
contract pGpkqˆGalpk{kqq-orbits of disjoint p´1q-curves. At each contraction, the Picard
rank drop, and the process ends on a rational smooth projective surface Y . It satisfies one
of the following properties and is called G-Mori fibre space,

• ´KY is ample and N1pXkq
GkˆGalpk{kq “ 1,

• there is a surjective morphism π : Y ÝÑ P1 with connected fibres such that ´KY is
π-ample and rkNSpXkq

GkˆGalpk{kq “ 1.
We can now run the Gpkq-equivariant MMP from Y over k, that is, we successively
contract all pGpkq ˆ Galpk{kqq-orbits of disjoint p´1q-curves. This process ends on a
rational smooth projective surface Z, which satisfies one of the properties above with Gk

replaced by Gpkq, and is called Gpkq-Mori fibre space.
If G is connected, Blanchard’s Lemma [BSU13, Proposition 4.2.1] implies that for

any extremal contraction X ÝÑ Y there exists a unique G-action on Y making the
contraction G-equivariant. In particular, for G connected, the G-MMP is the usual MMP
and a G-Mori fibre space is a Mori fibre space. If G is not connected, there are G-Mori
fibre spaces that are not Gpkq-Mori fibre spaces, nor Mori fibre spaces. An example is a
del Pezzo surface X of degree 6 from Proposition V.E, which is a AutpXq-Mori fibre space
by Proposition V.D(1) but not an AutkpXq-Mori fibre space nor a Mori fibre space.

IfX ÝÑ P1 is a surjective morphism with connected fibres, we denote by AutpX,P1q Ď

AutpXq the subgroup preserving this fibration.
Recall from Definition III.1.5 that we denote by SL,L a del Pezzo surface of degree 6

obtained by blowing up P2 in two points of degree 2 with splitting field L{k and L1{k

respectively, and then contracting the strict transform of a line through one of them. The
conics through the two points induce a conic bundle structure SL,L1{P1.

Theorem V.1.1 and then applying the G-MMP and the classification of rational min-
imal conic bundles from Lemma III.1.6 implies the following proposition.

Proposition V.A ([SZ21, Proposition 2.13]). Let G an infinite algebraic group acting
birationally on P2. Then there exists a G-equivariant birational map P2 99K X to a G-Mori
fibre space X{B that is one of the following:

1. B is a point and X a del Pezzo surface of degree K2
X P t6, 8, 9u and

rkNSpXkq
Galpk{kqˆGk “ 1.
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2. B “ P1 and there exists a birational morphism of conic fibrations X ÝÑ Fn
for some n ě 0, or X ÝÑ SL,L1 for some quadratic extensions L{k, L1{k, and
rkNSpXkq

Galpk{kqˆGk “ 2 and G Ď AutpX,P1q.

IfX is a del Pezzo surface, then AutpXq is an affine algebraic group, and if π : X ÝÑ P1

is a geometrically rational conic fibration, then AutpX,P1q is an affine algebraic group,
see for instance [SZ21, Lemma 2.14]. So, to classify up to conjugation and inclusion the
infinite algebraic groups acting birationally and faithfully on P2 it suffices to classify the
surfaces in Proposition V.A, to describe their automorphism groups, and then to classify
these groups up to conjugation by equivariant birational maps.

V.2 The relatively minimal surfaces

We present the classification of the rational del Pezzo surfaces of degree 6 and 8, and the
rational conic fibrations X{P1 that are AutpX,P1q-Mori fibre spaces.

V.2.1 Del Pezzo surfaces

Suppose that k has a quadratic extension L{k. We denote by QL the k-form P1
L ˆ P1

L

given by pru0 : u1s, rv0 : v1sq ÞÑ prvg0 : vg1s, ru
g
0 : ug1sq, where g is the generator of GalpL{kq.

The point pr1 : 1s, r1 : 1sq is a k-rational point of QL, so QL is rational over k. The second
part of the following lemma is classical, see for instance [Poo17, Proposition 9.4.12].

Proposition V.B ([SZ21, §3]).

1. QL is k-isomorphic to the quadric in P3
wxyz given by wz “ x2 ` axy ` ãy2, where

t2 ` at` ã P krts is the minimal polynomial of an element of Lzk.
2. If L{k and L1{k are quadratic extensions, then QL » QL1 if and only if L and L1

are k-isomorphic.
3. A rational del Pezzo surface of degree 8 is isomorphic to F0,F1 or some QL.
4. The group AutpQLq is isomorphic the k-form on AutpP1

L ˆ P1
Lq » AutpP1

Lq
2 ¸

xpu, vq
τ
ÞÑ pv, uqy given by the GalpL{kq-action pA,B, τqg “ pBg, Ag, τq.

The next few results are the classification rational of del Pezzo surfaces X of degree
6 and a description of AutpXq and AutkpXq. Recall that Xk contains precisely six p´1q-
curves, which can be represented by a hexagon, and on which Galpk{kq acts by symmetries.

Proposition V.2.1 ([SZ21, §4], [RZ18, §3]). If X is a rational del Pezzo surface of
degree 6, then the action of Galpk{kq on the p´1q-curves of Xk is one of the actions in
Figure V.1. Moreover, each of these actions are realised on some del Pezzo surface of
degree 6 over some perfect field.

If X is a rational del Pezzo surface of degree 6, the action of AutkpXq on PicpXkq

induces the split exact sequence

1 Ñ pk
˚
q
2
ÝÑ AutkpXq ÝÑ Sym3ˆZ{2 Ñ 1,
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(V.1) (V.2) (V.3) (V.4) (V.5)

(V.6) (V.7) (V.8) (V.9)

Figure V.1: The Galpk{kq-actions on the hexagon of a del Pezzo surface of degree 6.

and NSpXkq
AutkpXq “ 1. We now establish the restriction of the sequence to AutkpXq for

each of the cases in Figure V.1. The following propositions are a summary of [SZ21, §4],
and they are ordered according to the invariant Picard rank, and AutkpY, p1, . . . , prq Ă

AutkpY q denotes the subgroup of elements fixing p1, . . . , pr P Yk, and AutkpY, tp1, . . . , pruq

is the subgroup of elements preserving the set tp1, . . . , pru.

Proposition V.C ([Zim18b, §4]). Let X be a rational del Pezzo surface of degree 6. If
rkNSpXq “ 1, there is a quadratic extension L{k and a birational morphism π : XL ÝÑ P2

L

blowing up a point p “ tp1, p2, p3u of degree 3 with splitting field F {k, and one of the
following cases holds:
1. X is as in Figure (V.7), GalpF {kq » Z{3 and the action of AutkpXq on NSpXkq

induces the split exact sequence

1 Ñ AutLpP2, p1, p2, p3q
πGalpL{kqπ´1

ÝÑ AutkpXq ÝÑ Z{6 Ñ 1

2. X is as in Figure (V.9), GalpF {kq » Sym3 and the action of AutkpXq on NSpXkq

induces the split exact sequence where Z{2 is generated by a rotation

1 Ñ AutLpP2, p1, p2, p3q
πGalpL{kqπ´1

ÝÑ AutkpXq ÝÑ Z{2 Ñ 1,

and πGalpL{kqπ´1 acts by conjugation on AutLpP2, p1, p2, p3q. Moreover, X is a AutkpXq-
Mori fibre space.

The first of the following statements is classical.

Proposition V.D ([Zim18b]). Let X be a rational del Pezzo surface of degree 6. If
rkNSpXq ě 2 and rkNSpXqAutkpXq “ 1, then X is a AutkpXq-Mori fibre space, and X is
one of the following:
1. X is as in Figure (V.1), it is the blow-up of P2 in three rational points, and the action

of AutkpXq on NSpXq induces the split exact sequence

1 Ñ pk˚q2 ÝÑ AutkpXq ÝÑ Sym3ˆZ{2 Ñ 1.
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2. X is as in Figure (V.4), it is the blow-up of F0 in a point p “ tpp1, p1q, pp2, p2qu of
degree 2 and the action of AutkpXq on NSpXq induces the exact sequence,

1 Ñ AutkpP1, p1, p2q
2
ÝÑ AutkpXq ÝÑ Sym3ˆZ{2 Ñ 1

which is split if charpkq ‰ 2.
3. X is as in Figure (V.6), it is the blow-up of a point p “ tp1, p2, p3u of degree 3 in P2

with splitting field L such that GalpL{kq » Z{3. The action of AutkpXq on NSpXq

induces the split exact sequence

1 Ñ AutkpP2, p1, p2, p3q ÝÑ AutkpXq ÝÑ Z{6 Ñ 1

4. X is as in Figure (V.8), it is the blow-up of a point p “ tp1, p2, p3u of degree 3 in P2

with splitting field L such that GalpL{kq » Sym3. The action of AutkpXq on NSpXq

induces the split exact sequence, where Z{2 is generated by a rotation

1 Ñ AutkpP2, p1, p2, p3q ÝÑ AutkpXq ÝÑ Z{2 Ñ 1

Proposition V.E ([Zim18b]). Let X be a rational del Pezzo surface of degree 6. If
rkNSpXqAutkpXq ě 2, then X is as in Figure (V.2),(V.3),(V.5). Moreover, there is a bi-
rational morphism ν : X ÝÑ QL contracting two rational curves onto two rational points
p1, p2 or an irreducible curve onto a point tp1, p2u of degree 2. The action of AutkpXq on
NSpXq induces the split exact sequence

1 Ñ TL,L
1

pkq ÝÑ AutkpXq ÝÑ Z{2ˆ Z{2 Ñ 1,

where ηTL,L
1

ν´1 Ă AutpQL, p1, p2q is the subgroup preserving the rulings of QL and
L1{k is the splitting field of the set tp1, p2u, and ν AutkpXqν

´1 “ AutkpQ, tp1, p2uq and
rkNSpXqAutkpXq “ 2.

If p1, p2 are rational, then L1 “ k and TL,k is the split torus of dimension 2. If tp1, p2u

is a point of degree 2 whose splitting field L1 is k-isomorphic to L, then TL,L
1 is a 2-

dimensional split torus as well. This is not the case if L and L1 are not k-isomorphic, as
then TL,L1pkq contains elements that are not diagonisable over k.

V.2.2 Conic fibrations

Recall that the minimal conic fibration SL,L1{P1 can be obtained by blowing up the quadr-
tic surface QL in a point of degree 2 with splitting field L1 whose components are not in
the same ruling of QL

L. It is isomorphic to a del Pezzo surface of degree 6 from (V.3) or
(V.5). When viewed QL as quadratic surface in P3, then

SL,L1 » trw : x : y : zs, ru : vs P QL
ˆ P1

| upw ` bx` b̃zq “ vyu

where t2 ` bt ` b̃ P krts is the minimal polynomial of an element of L1zk [SZ21, §3]. The
fibration SL,L1{P1 is then given by the second projection.
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For a conic bundle X{P1, we have a homomorphism AutpX,P1q ÝÑ AutpP1q, whose
kernel we denote by AutpX{P1q, and by AutkpX,P1q its set of k-points.

Next we describe rational Mori conic bundles X ÝÑ P1 such that AutkpX,P1q acts
non-trivially on the set of components of the singular fibres. This is a generalisation of
[Bla09b, Lemme 4.3.5] and [RZ18, Lemma 4.1].

We denote by E Ă SL,L1 be the exceptional divisor of SL,L1 ÝÑ QL, which is a double
section of S{L,L1P1 with no rational points.

Lemma V.2.2 ([SZ21, §5]). Let Y be one of SL,L1 or Fn, n ě 0. Let X{P1 be a conic
fibration an π : X ÝÑ Y be a birational morphism over P1 such that ´KX is relatively
ample over P1. Suppose that AutkpX,P1q contains an element exchanging the components
of at least one singular geometric fibre of X. Let Hk Ď AutkpX{P1q be the subgroup of
elements acting trivially on NSpXkq.

1. If Hk is trivial, then AutkpX{P1q » pZ{2qr for r P t0, 1, 2u.
2. Suppose that Hk is non-trivial.

(a) If Y “ Fn, n ě 0, there exists N ě 1 and a birational morphism X Ñ FN above
P1 blowing up r ě 1 points p1, . . . , pr contained in a section SN of FN with S2

N “

N , contained in pairwise distinct fibres, and such that
řr
i“1 degppiq “ 2N .

(b) If Y “ SL,L1, then η is the blow-up of r ě 1 points contained in the special
double section E Ă SL,L1, such that the geometric components of p1, . . . , pr are
on pairwise distinct smooth geometric fibres, and each geometric component of
E contains half of the geometric components of each point.

In (2a) the strict transforms of SN and the exceptional section S´N have both self-
intersection´N , and they are the only sections with this property. In particular, the action
of AutpX{P1q and AutkpX{P1q on these curves the induce homomorphisms AutpX{P1q ÝÑ

Z{2 and AutkpX{P1q ÝÑ Z{2.
In (2b) the strict transform Ẽ of E has self-intersection Ẽ2 “ ´2 ´

ř

degppiq. Its
geometric components are the only geometric sections of self-intersectionď ´2. In partic-
ular, the action of AutpX{P1q and AutkpX{P1q on the geometric components of Ẽ induce
homomorphisms AutpX{P1q ÝÑ Z{2 and AutkpX{P1q ÝÑ Z{2, whose kernel we denote
by SOL,L1 and SOL,L1

pkq.

Proposition V.F. Let X{P1 be a conic fibration as in Lemma V.2.2(2) and ∆ Ă P1 the
image of the set tp1, . . . , pru. In each case of Proposition V.2.2(2a),(2b) there are split
exact sequences:
In (2a):

1 T1{µN AutpX{P1q Z{2 1

1 k˚{µNpkq AutkpX{P1q Z{2 1

where T1 is the split one-dimensional torus and µN its subgroup of N-th roots of unity.
In (2b):

1 SOL,L1 AutpX{P1q Z{2 1

1 SOL,L1
pkq AutkpX{P1q Z{2 1
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where SOL,L1
“ tpA,Bq P TL,L

1

| AB “ 1u, see Proposition V.E about the torus TL,L1, and
SOL,L1

pkq » ta P L˚ | aag “ 1u if L,L1 are k-isomorphicm, where g is the generator of
GalpL{kq » Z{2, and SOL,L1

pkq » k˚ if L,L1 are not k-isomorphic.

We denote by ∆ Ă P1 the image of the singular fibres of X{P1, which is preserved by
the action of AutpX,P1q and of AutkpX,P1q on P1.

Proposition V.G ([SZ21, §5]). Let X{P1 be a conic fibration as in Lemma V.2.2(2) and
∆ Ă P1 the image of the set tp1, . . . , pru. Then X is an AutpX,P1q-Mori fibre space and
an AutkpX,P1q-Mori fibre space, and the following hold.

1. AutpX,P1q “ AutpXq if Y “ SL,L1 and if Y “ FN and N ě 2.
2. In each case of Proposition V.2.2(2a),(2b) there are exact sequences:

In (2a), it is split:

1 AutpX{P1q AutpX,P1q AutpP1,∆q 1

1 AutkpX{P1q AutkpX,P1q AutkpP1,∆q 1

In (2b):
1 AutpX{P1q AutpX,P1q AutpP1,∆q 1

1 AutkpX{P1q AutkpX,P1q Ak 1

where Ak “ pD
L,L1

k ¸ Z{2q X AutkpP1,∆q Ă T1pkq ¸ Z{2, and
• if L,L1 are k-isomorphic: DL,L

k » tµ P k˚ | µ “ λλg, λ P L˚u, where g is the
generator of GalpL{kq,

• if L,L1 are not k-isomorphic: DL,L1

k “ tλλgg
1

P F | λ P K,λλg “ 1u, where
k Ă F Ă LL1 is the intermediate extension such that GalpF {kq » xgg1y Ă

GalpK{Lq ˆ GalpL{kq where g, g1 are the generators of GalpK{Lq,GalpL{kq,
respectively.

For k “ R we have DC,C
R “ Rą0 as in [RZ18]. In the situation of Lemma V.2.2(2a)

with N “ 1, the surface X is a del Pezzo surface of degree 6 and AutpX,P1q Ĺ AutpXq

and AutkpX,P1q Ď AutkpXq [SZ21, §5]. The exact sequence in (2b) is split if any element
in F is a square. We do not know whether it is split in general.

V.3 The classification

We can now describe the classification of the infinite algebraic groups acting birationally
on P2 up to inclusion and conjugation. It generalises the classification of infinite alge-
braic groups acting on P2 over C from [Bla09b] and over R from [RZ18] and holds no
surprises, except perhaps over the field with two elements. From Proposition V.A and the
propositions in §V.2, we obtain the following statement.

Theorem V.H ([SZ21, Theorem 1.1]). Let G an infinite algebraic group acting bira-
tionally on P2. Then there is a birational map P2 99K X that conjugates G to a subgroup
of AutpXq or AutpX,P1q, with X one of the following surfaces:
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1. X “ P2, X “ QL, X “ Fn, n ‰ 1;
2. X is the blow-up of P2 in three rational non-collinear points;
3. X is a del Pezzo surface of degree 6 with rkNSpXq “ 1 as in Proposition V.C(1).
4. X is a del Pezzo surface of degree 6 with rkNSpXqAutkpXq “ 1 not as in (2) or (3);
5. X is a del Pezzo surface of degree 6 with rkPicpXqAutkpXq “ 2;
6. there is a conic fibration π : X ÝÑ P1 as in Lemma V.2.2(2a) with N ě 2 and

rkNSpXkq
AutkpX,P

1q “ rkNSpXqAutkpX,P1q “ 2.
7. there is a conic fibration π : X ÝÑ P1 as in Lemma V.2.2(2b) and

rkNSpXkq
AutkpX,P

1q “ rkNSpXqAutkpX,P1q “ 2.

Next we classify the groups in Theorem V.H up to conjugation by birational maps. Let
G be an affine group and X{B a G-Mori fibre space. We call it G-birationally rigid if for
any G-equivariant birational map ϕ : X 99K X 1 to another G-Mori fibre space X 1{B1 we
have X 1 » X. In particular we have ϕAutpXqϕ´1 “ AutpX 1q. Note that we do not ask ϕ
to be an isomorphism. We call it G-birationally superrigid if any G-equivariant birational
map X 99K X 1 to another G-Mori fibre space X 1{B1 is an isomorphism. If we replace G
by Gpkq everywhere, we get the notion of Gpkq-birationally rigid and Gpkq-birationally
superrigid.

Note that G-birationally (super)rigid does not imply Gpkq-birationally (super)rigid.
Indeed, a rational del Pezzo surface X of degree 6 with rkNSpXqAutkpXq “ 2 is never
AutkpXq-birationally rigid because there is an AutkpXq-equivariant birational contraction
to some QL by Proposition V.E. However, it is AutpXq-birationally superrigid by the next
theorem.

Theorem V.I ([SZ21, Theorem 1.2]). Any surface X from the list in Theorem V.H is
AutpXq-birationally superrigid. Moreover, the following hold:
1. If X is as in (1),(4) or (7), it is AutkpXq-birationally superrigid.
2. Suppose that X is as in (2) or (3).

If |k| ě 3, then X is AutkpXq-birationally superrigid.
If |k| “ 2, there are AutkpXq-equivariant birational maps X 99K X 1, where X 1 is a
del Pezzo surface of degree 6 as in Proposition V.D(2).

3. Any conic fibration X{P1 from (6) is AutkpXq-birationally superrigid if k˚{µnpkq is
non-trivial. If k˚{µnpkq is trivial, and X 99K Y a AutkpXq-equivariant birational
map to a surface Y from Theorem V.H, then X » Y .

Theorem V.I is proven by studying all possible options of AutkpXq-equivariant Sark-
isov links starting from an AutkpXq-Mori fibre space X in Theorem V.H.

We say that an algebraic group G acting birationaly on P2 is maximal if it is maximal
with respect to inclusion. We say that Gpkq is maximal if for any algebraic subgroup G1

of BirkpP2q containing Gpkq, we have Gpkq “ G1pkq. For instance, if |k| “ 2 and X is
the blow-up of P2 in three non-collinear rational points, then AutkpXq is not maximal by
Theorem V.I.

Corollary V.J ([SZ21, Corollary 1.3]). Let H an infinite algebraic subgroup of BirkpP2q.
1. Then H is contained in a maximal algebraic subgroup G of BirkpP2q.
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2. Up to conjugation by a birational map, the maximal infinite algebraic subgroups of
BirkpP2q are precisely the groups AutpXq in Theorem V.H. Two maximal infinite
subgroups AutpXq and AutpX 1q are conjugate by a biratonal map if and only if
X » X 1.

3. Hpkq is maximal if and only if it is conjugate to one of the AutkpXq from (1), (4),
(6), (7), and from (2), (3) if |k| ě 3. Two such groups AutkpXq and AutkpX

1q are
conjugate by a birational map if and only if X » X 1.

We can also describe the parameter space of each family of conjugacy classes of the
AutkpXq-Mori fibre spaces in Theorem V.H, see [SZ21, Theorem 1.4]. For instance, for
the del Pezzo surfaces of degree 6, they correspond to the k-isomorphism classes of the
associated finite field extensions of k.

This concludes the classification of infinite algebraic groups acting birationally on P2
k

over a perfect field k up to conjugation and inclusion.

A Appendix: the classification of ele-
mentary relations in dimension 2

Throughout this section, k is a perfect field. In order to give the complete list of elementary
relations in BirMoripP2

kq, one needs to classify the rational rank 3 fibrations in dimension
2 and all possible contractions from each of them, see Example II.1.9. Accordingly, an
elementary relation will be presented in the form of a commutative blow-up diagram with
the dominating rank 3 fibration in the center. A rank 1 fibration will be denoted by Xi{Bi,
a rank 2 fibration by Yi{Bi and the dominating rank 3 fibration by T {B. The arrows ÝÑ
in the diagram are birational contractions and the dashed arrows 99K (with or without
head) are the Sarkisov links appearing in the elementary relation.

We will first look at the case T {P1 and then at T { pt, where we will order the cases
according to the degree K2

T .

A.1 Elementary relations above a curve

We classify the elementary relations dominated by a rational rank 3 fibration T {P1.

Remark A.1.1. Theorem II.3.4 (or Remark II.3.5) imply that the elementary relations
dominated by a rank 3 fibration T {P1 involves only Sarkisov links between Mori conic
bundles. Any birational morphism T ÝÑ X ÝÑ P1, where X{P1 is a Mori conic bundle
and T {P1 is a rank 3 fibration, is the blow up of two closed points p, q and the geometric
components of p and q contained in pairwise distinct smooth geometric fibres. The only
contractions from T over P1 are the contractions of the exceptional divisors Ep and Eq of
p and q, respectively, and of the strict transform fp and fq of the fibre through p and q,
respectively.
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The classification of rational Mori conic bundles in Lemma III.1.6 implies that any
elementary relation in BirMoripP2

kq dominated by a rank 3 fibration T {P1 is one of the
following three (see Definition III.1.5 for X {P1 and S{P1).

Fl{P1

Y2{P1 Y 12{P1

Fm{P1 T {P1 Fk{P1

Y1{P1 Y 11{P1

Fn{P1

fq

Eq

fp

Ep

fp fq

Eq Ep

fp

Ep

fq

Eq

S{P1

Y2{P1 Y 12{P1

S{P1 T {P1 S{P1

Y1{P1 Y 11{P1

S{P1

fq

Eq

fp

Ep

fp fq

Eq Ep

fp

Ep

fq

Eq

X {P1

Y2{P1 Y 12{P1

X {P1 T {P1 X {P1

Y1{P1 Y 11{P1

X {P1

fq

Eq

fp

Ep

fp fq

Eq Ep

fp

Ep

fq

Eq

A.2 Elementary relations dominated by a del Pezzo
surface

We now list the elementary relations dominated by a rank 3 fibration T { pt, where T is
rational. The list is ordered according to the degree K2

T of T , starting with K2
T “ 1 and

working our way up to K2
T “ 7. According to the argument in Remark II.3.5, T { pt factors

through some Mori fibre space X1{ pt, that is a del Pezzo surface X1 with ρpX1q “ 1, or
it dominates a link of type IV.

In the first case, T is the blow of X1 in two points p and p1 of degree degppq “ d and
degpp1q “ d1 with d ` d1 “ K2

T ´ K2
X1
. We list for each T the cases pX1, d, d

1q, and each
time we start with X1 “ P2, then X1 “ Q and then, if not covered yet, X1 a del Pezzo
surface of degree 6 with ρpX1q “ 1. The case where X1 is a del Pezzo surface of degree 5

with ρpX1q “ 1 will always turn out to be covered by the other three.
In the second case, T is the blow-up in one point p of degree d of a conic bundle X1{P1

with ρpX1{P1q “ 1 that is also a del Pezzo surface. It follows from [Sch19, Remark 6.1,
Lemma 6.13] that X1 is isomorphic to F0 or F1, or to a del Pezzo surface of degree 6 or of
degree 5. By assumption, there is a Sarkisov link of type IV starting from X1, so X1 “ F0

according to [Isk96, Theorem 2.6]. If the point p is of odd degree d, then the diagram
will show up as diagram of case pP2, 1, dq from above. Indeed, the blow-up of F0{P1 of p
induces a Sarkisov link F0 99K F1 of type II. The birational contraction F1 ÝÑ P2 will be
included in the diagram, so T ÝÑ F1 ÝÑ P2 is included in the diagram. In conclusion,
we only have to list the cases pF0, dq with d even.

Before we start, let us introduce Geiser links: Let X1{ pt be a rational Mori fibre
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space and suppose that it contains a point p of degree K2
X1
´ 2 such that its blowup

T 1 ÝÑ X1 yields a del Pezzo surface T 1, which has degree K2
T 1 “ 2. Then T 1{ pt is a rank

2 fibration and dominates a Sarkisov χ : X1 99K X1 called Geiser link. Geometrically, it is
defined as follows: |´KT 1 | induces a double cover T 1 ÝÑ P2 ramified over a smooth plane
quartic curve. The Galois involution of the double cover induces a birational involution
γ : X1 99K X1, called Geiser involution, whose base-locus is p. There exists α P AutpX1q

such that χ ˝ α “ γ.

A.2.1 Elementary relations dominated by a del Pezzo surface of
degree 1

Suppose that T { pt is a rank 3 fibration with K2
T “ 1. There is a birational morphism

Tk ÝÑ P2
k
blowing up eight points p1, . . . , p8 and Tk contains precisely 240 p´1q-curves:

• the eight exceptional divisors,
• the 28 strict transform of the lines through two of the pi,
• the 56 conics passing through five of p1, . . . , p8,
• the 56 cubics passing through seven of the pi and singular at one of these seven,
• the 56 quartics passing through p1, . . . , p8, three of the pi its double points
• the 28 quintics passing through p1, . . . , p8, six of the pi its double points,
• the eight sextics passing through p1, . . . , p8, one of the pi a triple point and double

points at the remaining seven.

The case pP2, 1, 7q:
Let T ÝÑ P2 be the blow-up of a rational point and a point of degree 7, and denote
respectively by E Ă T and E 11, . . . , E 17 Ă T the geometric components of their exceptional
divisors. Let L Ă T be the pullback of a general line in P2. The only Galpk{kq-orbits of
p´1q-curves on Tk of cardinality ď 8 are the following:

E, E11, . . . , E
1
7, `i :“ L´ E ´ E1i

Di7 :“ 3L´ 2E ´ E1i1 ´ ¨ ¨ ¨ ´ E
1
i6

D1i1 :“ 3L´ 2E1i1 ´ E
1
i2 ´ ¨ ¨ ¨ ´ E

1
i7

Qi1 :“ 5L´ E ´ E1i1 ´ 2E1i2 ´ ¨ ¨ ¨ ´ 2E1i7

S :“ 6L´ 3E ´ 2E11 ´ ¨ ¨ ¨ ´ 2E17,

S1i1 :“ 6L´ 3E1i1 ´ 2E1i2 ´ ¨ ¨ ¨ ´ 2E1i7 ´ 2E.

F1{P1 P2{ pt P2{ pt F1{P1

F0{P1 T {P1 F1{ pt Y 12{ pt F1{ pt T {P1 F0{P1

F0{ pt T { pt F0{ pt

F0{P1 T {P1 F1{ pt Y2{ pt F1{ pt T {P1 F0{P1

F1{P1 P2{ pt P2{ pt F1{P1

D

`

S
D S1

S S1

Q

S
S1

Q

D1
E

E1

`

D

»

`

E1 E
E1 D1

E D1
Q

»

γ

We have

E ¨E1i “ E ¨D1i “ Di ¨S “ S ¨S1i “ 0, E1i ¨ `j “ `i ¨Di “ D1i ¨Qj “ Qi ¨S
1
j “ δij , E1i ¨Dj “ 1´δij

for all i, j, where δij is the Kronecker delta. All other pairs of orbits have no trivial
intersections. Completing the contraction diagram, we obtain the commutative diagram
above, where by E 1 we mean E 11 ` ¨ ¨ ¨ ` E 17 and so forth.

The case pX1, d1, d2q “ pP2, 2, 6q:
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Let T ÝÑ P2 be the blow-up of a point of degree 2 and a point of degree 6, and denote
respectively by E1, E2 and E 11, . . . , E 16 the geometric components of their exceptional divi-
sors. Let L be the pullback of a general line in T . The only Galpk{kq-orbits of p´1q-curves
in Tk of cardinality ď 8 with pairwise disjoint members are the following:

E1, E2, E11, . . . , E
1
6, ` :“ L´ E1 ´ E2

Ci6 “ 2L´ E1i1 ´ ¨ ¨ ¨E
1
i5

Fi1 :“ 4L´ 2E1 ´ 2E2 ´ 2E1i1 ´ E
1
i2 ´ ¨ ¨ ¨ ´ E

1
i6

Q :“ 5L´ E1 ´ E2 ´ 2E11 ´ ¨ ¨ ¨ ´ 2E16

Si :“ 6L´ 3Ei ´ 2E3´i ´ 2E11 ´ ¨ ¨ ¨ ´ 2E16

S1i1 :“ 6L´ 3E1i1 ´ 2E1 ´ 2E2 ´ 2E1i2 ´ ¨ ¨ ¨ ´ 2E1i6 .

P2{ pt P2{ pt

Q{ pt Y3{ pt Y 13{ pt Y 23 { pt Q{ pt

Y2{ pt T { pt Y 12{ pt

Q{ pt Y1{ pt Y 11{ pt Y 21 { pt Q{ pt

P2 P2

Q

S
S1 F

S
`

C

S1 Q

S1
S

F

`

E1
E

C

F

E1

Q
E

C E1
E

`

We have

Ei¨E
1
j “ Ei¨Cj “ E1i¨` “ `¨Fi “ Ci¨Q “ Fi¨Sj “ Q¨S1i “ Si¨S

1
j “ 0, E1i¨Cj “ δj , Fi¨S

1
j “ 1´δij

for all i, j. All other pair of orbits have no trivial intersections. This yields again all
possible contractions from T to a rank 2 fibration and which ones commute. We the com-
mutative diagram above, where all quadrics Q are isomorphic according to Lemma V.B.

The case pP2, 3, 5q:
Let T ÝÑ P2 be the blow-up of a point of degree 3 and a point of degree 5, and denote
respectively by E1, E2, E3 and E 11, . . . , E 15 the geometric components of their exceptional
divisors. Let L Ă T be the pullback of a general line in P2. Among the 240 p´1q-curves
on Tk, the only Galpk{kq-orbits of cardinality ď 8 are the following:

E1, E2, E3, E11, . . . , E
1
5,

`i :“ L´ E1 ´ E2 ´ E3 ´ E
1
i

C :“ 2L´ E11 ´ ¨ ¨ ¨ ´ E
1
5

Di1 :“ 3L´ 2Ei1 ´ Ei2 ´ E
1
1 ´ ¨ ¨ ¨ ´ E

1
5

F :“ 4L´ 2E1 ´ 2E2 ´ 2E3 ´ E
1
1 ´ ¨ ¨ ¨ ´ E

1
5

Qi3 :“ 5L´ Ei1 ´ Ei2 ´ 2Ei3 ´ 2E11 ´ ¨ ¨ ¨ ´ 2E15

P2{ pt P2{ pt

X5{ pt Y3{ pt Y 13{ pt Y 23 { pt X5{ pt

Y2{ pt T { pt Y 12{ pt

X5{ pt Y1{ pt Y 11{ pt Y 21 { pt X5{ pt

P2{ pt P2{ pt

F

S1
S Q

S1

C

`

S

F

S
S1

Q

C

E
E1

`

Q

E

F

E1
` E

E1

C

Si1 :“ 6L´ 3Ei1 ´ 2Ei2 ´ 2Ei3 ´ 2E11 ´ ¨ ¨ ¨ ´ 2E15

S1i1 :“ 6L´ 3E1i1 ´ 2E1i2 ´ ¨ ¨ ¨ ´ 2E1i5 ´ 2E1 ´ 2E2 ´ 2E3

The orbit D1, ¨ ¨ ¨ , D6 has intersecting members, so it cannot be contracted from T . We
have

Ei ¨ E
1
j “ Ei ¨ C “ E 1j ¨ `i “ C ¨Qi “ F ¨ Si “ F ¨ ` “ Si ¨ S

1
j “ Q ¨ S 1j “ 0

for any i “ 1, 2, 3, j “ 1, . . . , 5. This yields the commutative diagram above, where X5

is a del Pezzo surface of degree 5. Two del Pezzo surfaces of degree 5 joined by a link
are joined by a Geiser link, hence the two surfaces are isomorphic. Any two points of
degree 3 not contained in a line can be sent onto one-another by an automorphism of
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P2 [Sch19, Lemma 6.10]. So, the two links P2 99K P2 in the diagram are involutions up
to pre-composing with an automorphism of P2. It follows that all del Pezzo surfaces of
degree 5 in the diagram are isomorphic.

The case pP2, 4, 4q:
Let T ÝÑ P2 be the blow-up of two points of degree 4 and denote respectively by
E1, . . . , E4 and E 11, . . . , E

1
4 the geometric components of their exceptional divisors. Let

L Ă P2 be a the pullback of a general line in P2. The only Galpk{kq orbits of p´1q-curves
on Tk of cardinality ď 8 with pairwise disjoint members are the following:

E1, . . . , E4, E 11, . . . , E
1
4

Ci :“ 2L´ E1 ´ ¨ ¨ ¨ ´ E4 ´ E
1
i, C 1i :“ 2L´ E 11 ´ ¨ ¨ ¨ ´ E

1
4 ´ Ei

Fi4 :“ 4L´ 2Ei1 ´ 2Ei2 ´ 2Ei3 ´ Ei4 ´ E
1
1 ´ ¨ ¨ ¨ ´ E

1
4,

F 1i4 :“ 4L´ 2E 1i1 ´ 2E 1i2 ´ 2E 1i3 ´ Ei4 ´ E1 ´ ¨ ¨ ¨ ´ E4,

Si :“ 6L´ 3Ei1 ´ 2Ei2 ´ 2Ei3 ´ 2Ei4 ´ 2E 11 ´ ¨ ¨ ¨ ´ 2E 14,

S 1i :“ 6L´ 3E 1i1 ´ 2E 1i2 ´ 2E 1i3 ´ 2E 1i4 ´ 2E1 ´ ¨ ¨ ¨ ´ 2E4.

We have

Ei ¨ E
1
j “ Ci ¨ F

1
j “ C 1i ¨ Fj “ Si ¨ S

1
j “ 0, Fi ¨ Sj “ F 1i ¨ Fj “ δij

for all i, j. No other pairs have trivial intersections. Completing the blow-up diagram, we
obtain the commutative diagram in Figure A.1.

X {P1 P2{ pt X {P1

X {P1 T {P1 S{ pt X { pt T {P1 X {P1

X { pt X { pt

P2{ pt T { pt P2{ pt

X { pt X { pt

X {P1 T {P1 X { pt X { pt T {P1 S{P1

X {P1 P2{ pt X {P1

Q1
S1

S S1
S

Q

C C1Q1

S1 S

Q

C1

E1E

CQ1 Q

C

E
E1 E

C1

E1

Figure A.1: the case pP2, 4, 4q.

Remark A.2.1. We want to express the p´1q-curves on Tk in terms of curves and excep-
tional divisors with respect to a birational morphism Tk ÝÑ Qk blowing up seven points.
For this, consider the blow-up Tk ÝÑ P2

k
of points p1, p2, q2, . . . , q7. Let P2

k
99K Qk be the

composition of the blow-up of p1, p2 and the contraction of the line ` through p1, p2 onto
a point q1 P Qk. It induces a birational morphism Tk ÝÑ Qk blowing up q1, q2, . . . , q7.
Looking from Qk, the p´1q-curves in Tk are the strict transform of the following curves:
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• seven exceptional divisors,
• for each fibration the seven fibres through one qi,
• the 35 of bidegree p1, 1q through three of the qi,
• the 42 of bidegree p1, 2q and p2, 1q through five of the qi,
• the 42 of bidegree p2, 2q through six of the qi having a double point at one of them,
• the 2 of bidegree p1, 3q and p3, 1q through q1, . . . , q7,
• the 42 of bidegree p2, 3q and p3, 2q through q1, . . . , q7 with a double point at two of
the qi,

• the 35 of bidegree p3, 3q through q1, . . . , q7 with a double point at four of the qi,
• the 14 of bidegree p3, 4q and p4, 3q through q1, . . . , q7 with double points at six of
the qi,

• the seven of bidegree p4, 4q through q1, . . . , q7 with a triple point at of the qi and
double points at the remaining six qi.

If F is the pullback of the curve generating NSpQq, then the above list translates as follows
(keeping the order), where the number of geometric components of the curve are indicated
in parenthesis.

seven exceptional divisors Ei p1q 4F ´ 2E1 ´ ¨ ¨ ¨ ´ 2E7 p2q

F ´ 2Ei p1q 5F ´ 4Ei1 ´ 4Ei2 ´ Ei3 ´ ¨ ¨ ¨ ´ Ei7 p2q

F ´ Ei1 ´ Ei2 ´ Ei3 p1q 3F ´ 2Ei1 ´ ¨ ¨ ¨ ´ 2Ei4 ´ Ei5 ´ Ei6 ´ Ei7 p1q

3F ´ 2Ei1 ´ ¨ ¨ ¨ ´ 2Ei5 p2q 7F ´ 2Ei1 ´ 4Ei2 ´ ¨ ¨ ¨ ´ 4Ei7 p2q

2F ´ 2Ei1 ´ Ei2 ´ ¨ ¨ ¨ ´ Ei6 p1q 4F ´ 3Ei1 ´ 2Ei2 ´ ¨ ¨ ¨ ´ 2Ei7 p1q

Since we have already covered all birational contractions T ÝÑ P2, we only need to
consider contractions of Galpk{kq-orbits of p´1q-curves with ď 7 members.

The case pQ, 2, 5q:
Let T ÝÑ Q be the blow-up of a point of degree 2 and a point of degree 5, and de-
note respectively by E1, E2 and E 11, . . . , E 15 the geometric components of their exceptional
divisors. Let F Ă T be the pullback of the curve generating NSpQq. The only Galpk{kq-
orbits of p´1q-curves on Tk of cardinality ď 7 and with pairwise disjoint members are the
following, where the number of geometric components is indicated in parenthesis.

E1, E2, E11, . . . , E
1
5,

`i :“ F ´ E1 ´ E2 ´ E
1
i p1q

D :“ 3F ´ 2E11 ´ ¨ ¨ ¨ ´ 2E12 p2q

D1i5 :“ 3F ´ 2E1i1 ´ ¨ ¨ ¨ ´ 2E1i4 ´ E
1
i5 ´ E1 ´ E1 p1q

Gi :“ 4F ´ 3Ei ´ 2E3´i ´ 2E11 ´ ¨ ¨ ¨ ´ 2E15 p1q

G1i1 :“ 4F ´ 3E1i1 ´ 2E1 ´ 2E2 ´ 2E1i2 ´ ¨ ¨ ¨ ´ 2E1i5 p1q

Q :“ 5F ´ 4E1 ´ 4E2 ´ 2E11 ´ ¨ ¨ ¨ ´ 2E15, p2q

Q{ pt X 1
5 Q{ pt

S{P1 S{ pt Y2{ pt Y 12{ pt S{ pt S{P1

T {P1 T { pt T {P1

S{P1 S{ pt Y1{ pt Y 11{ pt S{ pt S{P1

Q{ pt X5{ pt Q{ pt

G
G1

Q

`

G
Q

G1

D1

G1
G Q

`

ED
D1

E1

`

G1

D
D1

E D E1
E

We have

Ei ¨ E
1
j “ Ei ¨D “ D ¨D1i “ Q ¨ `i “ Q ¨Gi “ Gi ¨G

1
j “ 0, E 1i ¨ `j “ D1i ¨G

1
j “ δij

for all i, j. All other pairs have no trivial intersections. Completing the commutative
diagram yields the commutative diagram above, where X5 and X 1

5 are del Pezzo surfaces
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of degree 5.

The case pQ, 3, 4q:
Let T ÝÑ Q be the blow-up of a point of degree 3 and a point of degree 4, and denote
respectively by E1, E2, E3 and E 11, . . . , E 14 the geometric components of their exceptional
divisors. Let F Ă T be the pullback of the generator of NSpQq. The only Galpk{kq-orbits
of p´1q-curves on Tk of cardinality ď 7 and pairwise disjoint members are the following,
where the number of geometric components is indicated in parenthesis.

E1, E2, E3, E11, . . . , E
1
4,

` :“ F ´ E1 ´ E2 ´ E3 p1q

`1i4 :“ F ´ E1i1 ´ ¨ ¨ ¨ ´ E
1
i3 p1q

D :“ 3F ´ 2E11 ´ ¨ ¨ ¨ ´ 2E14 ´ E1 ´ E2 ´ E3 p1q

Q{ pt Q{ pt

X 1
6{ pt Y3{ pt Y 13{ pt Y 23 { pt X6{ pt

Y2{ pt T { pt Y 12{ pt

X 1
6{ pt Y1{ pt Y 11 Y 21 { pt X6{ pt

Q{ pt Q{ pt

`

G
D1 G1

G

D

E1

D1
`

D1

G
G1

D

`1
E

E1

G1

`1

`

E
E1 `1

E

D

D1i1 :“ 3F ´ 2E1 ´ 2E2 ´ 2E3 ´ 2E1i1 ´ E
1
i2 ´ ¨ ¨ ¨ ´ E

1
i4 p1q

Gi1 :“ 4F ´ 3Ei1 ´ 2Ei2 ´ 2Ei3 ´ 2E11 ´ ¨ ¨ ¨ ´ 2E14 p1q

G1i :“ 4F ´ 3E1i1 ´ 2Ei2 ´ ¨ ¨ ¨ ´ 2Ei4 ´ 2E1 ´ 2E2 ´ 2E3 p1q

We have

Ei ¨E
1
j “ Ei ¨ `

1
j “ E 1i ¨ ` “ ` ¨D1i “ `1i ¨D “ D1i ¨Gj “ D ¨G1i “ Gi ¨G

1
j “ 0, D1i ¨G

1
j “ 1´δij

for all i, j. All other pairs of orbits have no trivial intersections. Completing the commuta-
tive diagram yields the diagram above, where X6 and X 1

6 are del Pezzo surfaces of degree
6. The link joining two del Pezzo surfaces of degree 6 in the diagram is a Geiser link, so
the two surfaces are isomorphic.

Remark A.2.2. Any rational del Pezzo surface X6 of degree 6 with ρpX6q “ 1 has a
rational point: this is clear if k is infinite and for k finite it follows from [Wei56, p.557], see
also [Man86, Theorem 23.1]. Then there is a link of type II χ : X6 99K Q that is not defined
at a rational point r and contracts a curve D with three geometric components onto a
point of degree 3. See Figure A.2 for the following. The anticanonical divisor H :“ ´KX6

generates NSpX6q, and H is equivalent the sum of the p´1q-curves of pX6qk. The curve
D “ D1 ` D2 ` D3 on Figure A.2 is equivalent to H and has a triple point at r. The
pullback onto X6 of general curve F generating NSpQq has a double point at r and is
equivalent to H. We compute that the p´1q-curves in Tk are the following, where by abuse
of notation H Ă Tk denotes the pullback of a general curve generating NSpX6q and where
the number in parenthesis indicates the number of geometric components:

52



APPENDIX A. ELEMENTARY RELATIONS A.2. DOMINATED BY A DEL PEZZO SURFACE

Figure A.2: The link χ : X6 99K Q

the five exceptional divisors E1, . . . , E5

H (6) 3H ´ 4Ei1 ´ 4Ei2 ´ 4Ei3 ´ 2Ei4 ´ 2Ei5 (2)
H ´ 3Ei p3q 4H ´ 6Ei1 ´ 6Ei2 ´ 3Ei3 ´ 3Ei4 ´ 3Ei5 (3)
H ´ 2Ei ´ 2Ej p2q 5H ´ 6Ei1 ´ ¨ ¨ ¨ ´ 6Ei4 (6)
H ´ 2Ei1 ´ Ei2 ´ Ei3 ´ Ei4 p1q 5H ´ 3Ei1 ´ 6Ei2 ´ ¨ ¨ ¨ ´ 6Ei5 (3)
2H ´ 3Ei1 ´ 3Ei2 ´ 3Ei3 p3q 6H ´ 6E1 ´ ¨ ¨ ¨ ´ 6E5 (6)
2H ´ 2E1 ´ ¨ ¨ ¨ ´ 2E5 p2q 7H ´ 12Ei1 ´ 6Ei2 ´ ¨ ¨ ¨ ´ 6Ei5 (6)
2H ´ 3Ei1 ´ 2Ei2 ´ ¨ ¨ ¨ ´ 2Ei5 p1q 11H ´ 12E1 ´ ¨ ¨ ¨ ´ 12E5 (6)

Since we have already covered all contractions T ÝÑ P2 and T ÝÑ Q, we only need to
consider contractions of Galpk{kq-orbits of p´1q-curves with ď 5 members.

The case pX6, 2, 3q:
Let T ÝÑ X6 be the blow-up of a point of degree 2 and a point of degree 3 on a del Pezzo
surface X6 of degree 6 with ρpX6q “ 1, and denote respectively by E1, E2 and E 11, E 12, E 13
the geometric components of their exceptional divisors. From Remark A.2.2 we obtain
that the only Galpk{kq-orbits of p´1q-curves on Tk of cardinality ď 5 and whose members
are pairwise disjoint are the following, where the number in parenthesis indicates the
number of geometric components:

E1, E2, E11, E
1
2, E

1
3

A :“ H ´ 2E1 ´ 2E2 p2q

D :“ 2H ´ 3E11 ´ 3E12 ´ E
1
3 p3q

Gi :“ 2H ´ 3Ei ´ 2E3´i ´ 2E11 ´ ¨ ¨ ¨ ´ 2E13 p1q

Ii1 :“ 2H ´ 3E1i1 ´ 2E1 ´ 2E2 ´ 2E1i2 ´ 2E1i3 p1q

J :“ 3H ´ 2E1 ´ 2E2 ´ 3E11 ´ ¨ ¨ ¨ ´ 3E13 p2q

N :“ 4H ´ 6E1 ´ 6E2 ´ 3E11 ´ ¨ ¨ ¨ ´ 3E13 p3q

X5
6{ pt X4

6{ pt

X6
6{ pt Y3{ pt Y 13{ pt Y 23 { pt X3

6{ pt

Y2{ pt T { pt Y 12{ pt

X7
6{ pt Y1{ pt Y 11{ pt Y 21 { pt X2

6{ pt

X8
6{ pt X6{ pt

N

I
G J

I

D

A

G
N

G
I

J

D

E
E1

A

J

E

N

E
A E

E1

D

We have

Ei ¨ E
1
j “ Ei ¨D “ E 1j ¨ A “ A ¨N “ D ¨ J “ Gi ¨ Ij “ Gi ¨N “ Ii ¨ J “ 0

for all i, j. All other pairs of orbits have no trivial intersections. Completing the blow-
up diagram with these contractions, we obtain the commutative digram above, where
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X2
6 , . . . , X

8
6 are del Pezzo surfaces of degree 6.

The remaining cases:
These are pQ, 1, 6q, pX6, 1, 4q, pX5, 1, 3q and pX5, 2, 2q, and they already appear in the
diagrams of the cases pP2, 2, 6q, pQ, 3, 4q, pP2, 3, 5q and pQ, 2, 5q, respectively.

A.2.2 Elementary relations dominated by a del Pezzo surface of
degree 2

Suppose that T { pt is a rank 3 fibration with K2
T “ 2. There is a birational morphism

Tk ÝÑ P2
k
blowing up eight points p1, . . . , p7 and Tk contains precisely 56 p´1q-curves:

• the seven exceptional divisors,
• the 21 strict transform of the lines through two of the pi,
• the 21 conics passing through five of p1, . . . , p8,
• the seven cubics passing through seven of the pi and singular at one of these seven,

The case pP2, 1, 6q:
Let T ÝÑ P2 be the blow-up of a rational point and a point of degree 6, and denote
respectively by E be the exceptional divisor of the rational point and E 11, . . . , E

1
6 the

geometric components of the exceptional divisors of the point of degree 6. Let L Ă T be
the pullback of a general line in P2. The only Galpk{kq-orbits of p´1q-curves on Tk of
cardinality ď 7 are the following:

E, E11, . . . , E
1
6,

`i :“ L´ E ´ E1i

Ci6 :“ 2L´ E1i1 ´ ¨ ¨ ¨ ´ E
1
i5

D :“ 3L´ 2E ´ E11 ´ ¨ ¨ ¨ ´ E
1
6

D1i1 :“ 3L´ 2E1i1 ´ E
1
i2 ´ ¨ ¨ ¨ ´ E

1
i6

E ¨ E1i “ E ¨ Ci “ `i ¨D “ D ¨Di “ 0

E1i ¨ `j “ Ci ¨D
1
j “ δij , E1i ¨ Cj “ `i ¨D

1
j “ 1´ δij

P2{ pt P2{ pt

F1{P1 F1{ pt Y2{ pt F1{ pt F1{P1

T {P1 T { pt T {P1

F1{P1 F1{ pt Y1{ pt F1{ pt F1{P1

P2 P2

D
D1 `

D

C

D1 D1
D

`

E1
E

C

`

E1

E
C E1

E

for all i, j, where δij is the Kronecker delta. Completing the contraction diagram, we
obtain the commutative diagram above.

The case pP2, 2, 5q:
Let T ÝÑ P2 be the blow-up of a point of degree 2 and a point of degree 5, and denote
respectively by E1, E2 and E 11, . . . , E 15 the geometric components of their exceptional divi-
sors. Let L Ă T be the pullback of a general line. The only Galpk{kq-orbits of p´1q-curves
on T of cardinality ď 7 are the following:
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E1, E2, E11, . . . , E
1
5

` :“ L´ E1 ´ E2

C :“ 2L´ E11 ´ ¨ ¨ ¨ ´ E
1
5

Di :“ 3L´ 2Ei ´ E3´i ´ E
1
1 ´ ¨ ¨ ¨ ´ E

1
5

D1i1 :“ 3L´ 2E1i1 ´ E1 ´ E2 ´ E
1
i2 ´ ¨ ¨ ¨ ´ E

1
i5

Q{ pt Y3{ pt P2{ pt

Y2{ pt T { pt Y 12{ pt

X5{ pt Y1{ pt Y 11{ pt Y 21 { pt X 1
5{ pt

P2 Q

C D

D1

E

D1

D

`
E1

E

C
D1

`

C

E1

E `

D

E1

We have
Ei ¨ E

1
j “ Ei ¨ C “ E 1j ¨ ` “ ` ¨Di “ C ¨D1j “ Di ¨D

1
j “ 0

for all i, j. All other pairs of orbits have no trivial intersections. Completing the blow-up
diagram, we obtain the commutative diagram above, where X5 and X 1

5 are del Pezzo
surfaces of degree 5.

The case pP2, 3, 4q:
Let T ÝÑ P2 be the blow-up of a point of degree 3 and a point of degree 4, and denote
respectively by E1, E2, E3 and E 11, . . . , E 14 the geometric components of their exceptional
divisors. Let L Ă T be the pullback of a general line. The only Galpk{kq-orbits of p´1q-
curves on T of cardinality ď 7 and with pairwise disjoint members are the following:

E1, E2, E3, E11, . . . , E
1
4

`i3 :“ L´ Ei1 ´ Ei2

Ci :“ 2L´ Ei ´ E
1
1 ´ ¨ ¨ ¨ ´ E

1
4

Di1 :“ 3L´ 2Ei1 ´ Ei2 ´ Ei3 ´ E
1
1 ´ ¨ ¨ ¨ ´ E

1
4

D1i1 :“ 3L´ 2E1i1 ´ E
1
i2 ´ ¨ ¨ ¨ ´ E

1
i4 ´ E1 ´ E2

Ei ¨ E
1
j “ E1j ¨ `i “ Ci ¨D

1
j “ Di ¨D

1
j “ 0

Ei ¨ Cj “ `i ¨Dj “ δij , Ci ¨Dj “ 1´ δij

P2{ pt P2{ pt

X {P1 X { pt Y2{ pt X { pt X {P1

T {P1 T { pt T {P1

X {P1 X { pt Y1 X { pt X {P1

P2{ pt P2{ pt

D1
D C

D1

D

`

D
D1

C

E
E1

`

C

E

E1 ` E E1

for all i, j “ 1, 2, 3. All other pairs of orbits have no trivial intersections. Completing the
blow-up diagram, we obtain the commutative diagram above.

Remark A.2.3. If Tk ÝÑ Qk is a blow-up, then from Remark A.2.1 we deduce that
the 56 p´1q-curves on Tk are as follows, where F is the curve generating NSpQq and the
number of geometric components is indicated in parenthesis:

• six exceptional divisors Ei (1)
• F ´ 2Ei (2)
• F ´ Ei1 ´ Ei2 ´ Ei3 (1)
• 3F ´ 2Ei1 ´ ¨ ¨ ¨ ´ 2Ei5 (2)
• 2F ´ 2Ei1 ´ Ei2 ´ ¨ ¨ ¨ ´ Ei6 (1)

The case pQ, 2, 4q:
Let T ÝÑ Q be the blow-up of a point of degree 2 and a point of degree 4, and denote
respectively by E1, E2 and E 11, . . . , E 14 the geometric components of their exceptional di-
visors. Let F Ă T be the pullback of the curve generating NSpQq. From Remark A.2.3 we
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obtain that the only Galpk{kq-orbits of p´1q-curves in Tk of cardinality ď 6 and whose
members are pairwise disjoint are the following, where the number in parentheses indicates
the number of geometric components:

E1, E2, E11, . . . , E
1
4

`i :“ F ´ E1 ´ E2 ´ E
1
i p1q

`1i4 :“ F ´ E1i1 ´ E
1
i2 ´ E

1
i3 p1q

Ci :“ 2F ´ 2Ei ´ E3´i ´ E
1
1 ´ ¨ ¨ ¨ ´ E

1
4 p1q

C 1i1 :“ 2F ´ 2E1i1 ´ E1 ´ E2 ´ E
1
i2 ´ ¨ ¨ ¨ ´ E

1
i4 p1q

Ei ¨ E
1
j “ Ei ¨ `

1
j “ `i ¨ Cj “ Ci ¨ C

1
j “ 0

E1i ¨ `j “ `i ¨ C
1
j “ `1i ¨ C

1
j “ δij , E1i ¨ `

1
j “ 1´ δij

Q{ pt Q{ pt

S{P1 S{ pt Y2{ pt S{ pt S{P1

T {P1 T { pt T {P1

S{P1 S{ pt Y1{ pt S{ pt S{P1

Q{ pt Q{ pt

C
` C1

C

`

E1

`
C

C1

`1
E

E1

C1

`1

E
E1 `1

E

for all i, j. All other pairs of orbits have no trivial intersections. Completing the blow-up
diagram, we obtain the commutative diagram above.

The case pQ, 3, 3q:
Let T ÝÑ Q be the blow-up of two points of degree 3 and denote respectively by E1, E2, E3

and E 11, E
1
2, E

1
3 the geometric components of their exceptional divisors. Let F Ă T be

the pullback of the curve generating NSpQq. From Remark A.2.3 we obtain that the
only Galpk{kq-orbits of p´1q-curves in Tk of cardinality ď 6 and whose members are
pairwise disjoint are the following, where the number in paretheses indicates the number
of geometric components:

E1, E2, E3, E11, E
1
2, E

1
3

` :“ F ´ E1 ´ E2 ´ E3 p1q

`1 :“ F ´ E11 ´ E
1
2 ´ E

1
3 p1q

Ci1 :“ 2F ´ 2Ei1 ´ Ei2 ´ Ei3 ´ E
1
1 ´ E

1
2 ´ E

1
3 p3q

C 1i1 :“ 2F ´ 2E1i1 ´ E
1
i2 ´ E

1
i3 ´ E1 ´ E2 ´ E3 p3q

Q{ pt

X3
6{ pt Y3{ pt Y 13{ pt X2

6{ pt

Y2{ pt T { pt Y 12{ pt

X4
6{ pt Y1{ pt Y 11{ pt X1

6{ pt

Q{ pt

`
C C1 `1

C1

E1

C1 C

`1

EE1

`

C

E

`
E E1 `1

We have

Ei ¨ E
1
j “ Ei ¨ `

1
“ E 1j ¨ ` “ ` ¨ C 1j “ `1 ¨ Ci “ Ci ¨ C

1
j “ 0, i, j “ 1, . . . , 3.

All other pairs of orbits have no trivial intersections. Completing the blow-up diagram,
we obtain the commutative diagram above, where X1

6 , . . . , X
4
6 are del Pezzo surfaces of

degree 6.

Remark A.2.4. Let T ÝÑ X6 be a birational morphism to a del Pezzo surface of degree
6 with ρpX6q “ 1. By Remark A.2.2, the curves on T of negative self-intersection are
as follows, where H is the pullback of the curve generating NSpX6q and the number of
geometric components is indicated in parenthesis:
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four exceptional divisors Ei p1q H ´ 2Ei1 ´ Ei2 ´ Ei3 ´ Ei4 p1q

H p6q 2H ´ 3Ei1 ´ 3Ei2 ´ 3Ei3 p3q

H ´ 3Ei p3q 5H ´ 6E1 ´ ¨ ¨ ¨ ´ 6E4 p6q

H ´ 2Ei ´ 2Ej p2q

Since we have already covered the birational contractions T ÝÑ P2 and T ÝÑ Q, we only
need to consider Galpk{kq-orbits of p´1q-curves with ď 4 members.

The case pX6, 2, 2q:
Let T ÝÑ X6 be the blow-up of two points of degree 2 on a del Pezzo surfaceX6 of degree 6

with ρpX6q “ 1, and denote respectively by E1, E2 and E 11, E 12 the geometric components
of their exceptional divisors. Let H “ ´KX6 be the pullback of the curve generating
NSpX6q. From Remark A.2.4, we obtain that the only Galpk{kq-orbits of p´1q-curves in
Tk of cardinality ď 4 are the following, where the number in parentheses indicates the
number of geometric components:

E1, E2, E11, E
1
2

`i1 :“ H ´ 2Ei1 ´ Ei2 ´ E
1
1 ´ E

1
2 p1q

`1i1 :“ H ´ 2E1i1 ´ E
1
i2 ´ E1 ´ E2 p1q

C :“ H ´ 2E1 ´ 2E2 p2q

C 1 :“ H ´ 2E11 ´ 2E12 p2q

X4
6{ pt

X5
6{ pt Y3{ pt Y 13{ pt X3

6{ pt

Y2{ pt T { pt Y 12{ pt

X6
6{ pt Y1{ pt Y 11{ pt X2

6{ pt

X6{ pt

C `1 `
C1

`

E1

` `1

C1

EE1

C

`1

E

C
E E1 C1

We have

Ei ¨ E
1
j “ Ei ¨ C

1
“ E 1j ¨ C “ `i ¨ `

1
j “ `i ¨ C “ `1i ¨ C

1
“ 0, i, j “ 1, 2.

All other pairs of orbits have no trivial intersections. Completing the blow-up diagram,
we obtain the commutative diagram above, where X2

6 , . . . , X
6
6 are del Pezzo surfaces of

degree 6.

The remaining cases:
These are pQ, 1, 5q, pX6, 1, 3q and pX5, 1, 2q, and they appear in the diagrams of the cases
pP2, 2, 5q, pQ, 3, 3q and pP2, 2, 5q, respectively.

The case pF0, 6q:
Let T ÝÑ F0 be the blow-up of a point of degree 6, and denote by E1, . . . , E6 the
geometric components of its exceptional divisor. Let F1, F2 the the classes of the fibres of
the two fibrations of F0. From Remark A.2.3 we obtain that the only Galpk{kq-orbits of
p´1q-curves in Tk of cardinality ď 7 are the following, where the number in parentheses
indicates the number of geometric components:
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E1, . . . , E6

Cji :“ Fj ´ Ei

D1i6 :“ F1 ` 2F2 ´ Ei1 ´ ¨ ¨ ¨ ´ Ei5

D2i6 :“ 2F1 ` F2 ´ Ei1 ´ ¨ ¨ ¨ ´ Ei5

Gi1 :“ 2pF1 ` F2q ´ 2Ei1 ´ Ei2 ´ ¨ ¨ ¨ ´ Ei6

F0{P1 F0{P1

F0{P1 T {P1 F0{ pt T {P1 F0{P1

F0{ pt T { pt F0{ pt

F0{P1 T {P1 F0{ pt T {P1 F0{P1

F0{P1 F0{P1

»

»

C2

G G
C1

G

C1

E

C2

C2

E
C1

E

»

»

We have

EiC1j “ EiC2j “ C1iD1j “ D1iGj “ D2iGj “ δij, C1iGj “ C2iGj “ C1iC2j “ 1´ δij,

and C1iD2j “ C2iD1j “ δij ` 1. Completing the blow-up diagram, we obtain the commu-
tative diagram above.

A.2.3 Elementary relations dominated by a del Pezzo surface of
degree 3

Suppose that T { pt is a rank 3 fibration with K2
T “ 3. There is a birational morphism

Tk ÝÑ P2
k
blowing up eight points p1, . . . , p6 and Tk contains precisely 27 p´1q-curves:

• the six exceptional divisors,
• the 15 strict transform of the lines through two of the pi,
• the 6 conics passing through five of p1, . . . , p6.

The case pP2, 1, 5q:
Let T ÝÑ P2 be the blow-up of a rational point and a point of degree 5, and denote
respectively by E the exceptional divisor of the rational point and E 11, . . . , E 15 the geometric
components of the exceptional divisors of the point of degree 5. Let L Ă T be the pullback
of a general line in P2. The only Galpk{kq-orbits of p´1q-curves on Tk of cardinality ď 6

are:

E, E11, . . . , E
1
5

`i :“ L´ E ´ E1i

C 1i5 :“ 2L´ E ´ E1i1 ´ ¨ ¨ ¨ ´ E
1
i4

C :“ 2L´ E11 ´ ¨ ¨ ¨ ´ E
1
5

E ¨ E1j “ E ¨ C “ C 1j ¨ C “ 0

E1i ¨ `j “ `i ¨ C
1
j “ δij , E1i ¨ C

1
j “ 1´ δij

F0{P1 F0 F0{P1

F1{P1 T {P1 T { pt T {P1 F1{P1

F1{ pt Y1{ pt Y 11{ pt F1{ pt

P2{ pt X5{ pt P2{ pt

C1
` `

E
EC

C1

`

E1

C
C1 E C

E
E

for all i, j. All other pairs of orbits have no trivial intersections. This yields all possible
contractions from T {B to a rank 2 fibration. Completing the contraction diagram starting
from T , we obtain the commutative diagram above, where X5 is a del Pezzo surface of
degree 5.

The case pP2, 2, 4q:
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Let T ÝÑ P2 be the blow-up of a point of degree 2 and a point of degree 4, and denote
respectively by E1, E2 and E 11, . . . , E 14 the geometric components of their exceptional di-
visors. Let L Ă T be the pullback of a general line in P2. The only Galpk{kq-orbits of
p´1q-curves in Tk of cardinality ď 6 and pairwise disjoint members are:

E1, E2, E11, . . . , E
1
4

` :“ L´ E1 ´ E2,

Ci :“ 2L´ Ei ´ E
1
1 ´ ¨ ¨ ¨ ´ E

1
4

C 1i4 :“ 2L´ E1 ´ E2 ´ E
1
i1 ´ ¨ ¨ ¨ ´ E

1
i3

Ei ¨ E
1
j “ E1j ¨ ` “ ` ¨ C 1i “ C 1i ¨ Cj “ 0

Ei ¨ Cj “ δij , E1i ¨ C
1
j “ 1´ δij

X {P1 T {P1 X {P1

X { pt T { pt X { pt

P2{ pt Y1{ pt Y 11{ pt Y 21 { pt P2{ pt

Q{ pt Q{ pt

E C

E1

C

C1
`

E1

E

C1

E
`

E1 C1

C

`

for all i, j. All other pairs of orbits have no trivial intersections. Completing the contraction
diagram starting from T , we obtain the commutative diagram above.

The case pP2, 3, 3q:
Let T ÝÑ P2 be the blow-up of two points of degree 3 and denote respectively by E1, E2, E3

and E 11, E
1
2, E

1
3 the geometric components of their exceptional divisors. Let L Ă T be

the pullback of a general line in P2. The only Galpk{kq-orbits of p´1q-curves in Tk of
cardinality ď 6 and pairwise disjoint members are:

E1, E2, E3, E11, E
1
2, E

1
3

`i3 :“ L´ Ei1 ´ Ei2

`1i3 :“ L´ E1i1 ´ E
1
i2

Ci3 :“ 2L´ E1 ´ E2 ´ E3 ´ E
1
i1 ´ E

1
i2

C 1i3 :“ 2L´ Ei1 ´ Ei2 ´ E
1
1 ´ E

1
2 ´ E

1
3

P2{ pt

P2{ pt Y3{ pt Y 13{ pt P2{ pt

Y2{ pt T { pt Y 12{ pt

P2{ pt Y1{ pt Y 11{ pt P2{ pt

P2{ pt

` C1 C
`1

C

E1

C C1

`1

EE1

`

C1

E

`
E E1 `1

We have

Ei ¨ E
1
j “ Ei ¨ `

1
j “ E 1j ¨ `i “ `i ¨ Cj “ `1i ¨ C

1
j “ Ci ¨ C

1
j “ 0,

Ei ¨ C
1
j “ E 1i ¨ Cj “ 1´ δij, `i ¨ C

1
j “ `1i ¨ Ci “ δij

for i, j “ 1, 2, 3. All other pairs of orbits have no trivial intersections. Completing the
contraction diagram starting from T , we obtain the diagram above.

The case pQ, 2, 3q:
Let T ÝÑ Q be the blow-up of a point of degree 2 and a point of degree 3, and denote
respectively by E1, E2 and E 11, E 12, E 13 the geometric components of their exceptional divi-
sors. Let F Ă T be the pullback of the curve generating NSpQq. From Remark A.2.1 we
obtain that the only Galpk{kq-orbits of p´1q-curves in Tk of cardinality ď 5 and pairwise
disjoint members are:
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E1, E2, E11, E
1
2, E

1
3

` :“ F ´ E11 ´ E
1
2 ´ E

1
3 p1q

Di :“ F ´ E1 ´ E2 ´ E
1
i p1q

C :“ 3F ´ 2E1 ´ 2E2 ´ 2E11 ´ 2E12 ´ 2E13 p2q

Ei ¨ E
1
j “ Ei ¨ ` “ ` ¨ C “ C ¨Di “ 0

E1i ¨Dj “ δij

S{P1 T {P1 S{P1

S{ pt T { pt S{ pt

Q{ pt Y1{ pt Y 11{ pt Y 21 { pt Q{ pt

X6{ pt X 1
6{ pt

E1 D

E

D

C
`

E

E1

C

E1

`
E C

D

`

for all i, j. All other pairs of orbits have no trivial intersections. Completing the contraction
diagram starting from T , we obtain the diagram above, where X6 and X 1

6 are del Pezzo
surfaces of degree 6.

The remaining cases:
They are pQ, 1, 4q, pX6, 1, 2q and pX5, 1, 1q, and they appear in the diagrams of the cases
pP2, 2, 4q, pQ, 2, 3q and pP2, 1, 5q, respectively.

A.2.4 Elementary relations dominated by a del Pezzo surface of
degree 4

Suppose that T { pt is a rank 3 fibration with K2
T “ 4. There is a birational morphism

Tk ÝÑ P2
k
blowing up eight points p1, . . . , p5 and Tk contains precisely 16 p´1q-curves:

the five exceptional divisors, the 10 strict transform of the lines through two of the pi,
and the conic passing through five of p1, . . . , p5.

The case pP2, 1, 4q:
Let T ÝÑ P2 be the blow-up of a rational point and a point of degree 4, and denote by E
the exceptional divisor of the rational point and by E 11, . . . , E 14 the geometric components
of their exceptional divisors of the point of degree 4. Let L Ă T be the pullback of a
general line. The only Galpk{kq-orbits of p´1q-curves in Tk of cardinality ď 5 are:

E, E11, . . . , E
1
4

`i :“ L´ E ´ E1i

C :“ 2L´ E ´ E11 ´ ¨ ¨ ¨ ´ E
1
4

E ¨ E1j “ C ¨ `j “ 0, E1i ¨ `j “ δij

P2{ pt

X {P1 X { pt F1{ pt F1{P1

T {P1 T { pt T {P1

X {P1 X { pt F1{ pt F1{P1

P2{ pt

` C

C

E

C `

E1E

`

E1

E1 E

All other pairs of orbits have no trivial intersections. By completing the contraction dia-
gram starting from T , we obtain the above commutative diagram.

The case pP2, 2, 3q:
Let T ÝÑ P2 be the blow-up of a point of degree 2 and a point of degree 3, and denote
respectively by E1, E2 and E 11, E 12, E 13 the geometric components of their exceptional divi-
sors. Let L Ă T be the pullback of a general line. The only Galpk{kq-orbits of p´1q-curves
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in Tk of cardinality ď 5 are:

E1, E2, E11, E
1
2, E

1
3

` :“ L´ E1 ´ E2

`1i3 :“ L´ E1i1 ´ E
1
i2

C :“ 2L´ E1 ´ E2 ´ E
1
1 ´ E

1
2 ´ E

1
3

Ei ¨ E
1
j “ Ei ¨ `

1
j “ E1j ¨ ` “ ` ¨ C “ `1j ¨ C “ 0

X6{ pt

Y2{ pt T { pt Y 12{ pt

Q{ pt Y1{ pt Y 11{ pt Y 21 { pt Q{ pt

P2{ pt P2{ pt

`1

`

`

E1
E

`1

C

C

E1

C
E

`1 E1

`
E

for i “ 1, 2, j “ 1, 2, 3. All other pairs of orbits have no trivial intersections. By completing
the contraction diagram starting from T , we obtain the above commutative diagram,
where X6 is a del Pezzo surface of degree 6.

The case pQ, 2, 2q:
Let T ÝÑ Q be the blow-up of two points of degree 2 and denote respectively by E1, E2

and E 11, E
1
2 the geometric components of their exceptional divisors. Let F Ă T be the

pullback of a general curve generating NSpQq. From Remark A.2.1 we obtain that the
only Galpk{kq-orbits of p´1q-curves in Tk with pairwise disjoint members are:

E1, E2, E11, E
1
2

`i :“ F ´ Ei ´ E
1
1 ´ E

1
2

`1i :“ F ´ E1 ´ E2 ´ E
1
i

Ei ¨ E
1
j “ `i ¨ `

1
j “ 0, i, j “ 1, 2

Ei ¨ `j “ E1i ¨ `
1
j “ δij , i, j “ 1, 2

Q{ pt

S{P1 S{ pt S{ pt S{P1

T {P1 T { pt T {P1

S{P1 S{ pt S{ pt S{P1

Q{ pt

`1 `

`

E

` `1

E E1

`1

E1

E1 E

By completing the contraction diagram starting from T , we obtain the above diagram.

The remaining cases:
They are pQ, 3, 1q and pX6, 1, 1q, which both appear in the diagram of pP2, 2, 3q.

The case pF0, 4q:
Let T ÝÑ F0 be the blow-up of a point of degree 4, and denote by E1, . . . , E4 the
geometric components of its exceptional divisor. Let F1, F2 the the classes of the fibres of
the two fibrations of F0. From Remark A.2.3 we obtain that the only Galpk{kq-orbits of
p´1q-curves in Tk of cardinality ď 5 are the following, where the number in parentheses
indicates the number of geometric components:

E1, . . . , E4

Cji :“ Fj ´ Ei

Di4 :“ F1 ` F2 ´ Ei1 ´ Ei2 ´ Ei3

EiC1j “ EiC2j “ C1iD1j “ δij

C1iC2j “ 1´ δij

F0{P1 F0{P1

F0{P1 T {P1 F0{ pt T {P1 F0{P1

F0{ pt T { pt F0{ pt

F0{P1 T {P1 F0{ pt T {P1 F0{P1

F0{P1 F0{P1

»

»

C2

G G
C1

G

C1

E

C2

C2

E
C1

E

»

»

Completing the blow-up diagram, we obtain the commutative diagram above.
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A.2.5 Elementary relations dominated by a del Pezzo surface of
degree 5

Suppose that T { pt is a rank 3 fibration with K2
T “ 5. There is a birational morphism

Tk ÝÑ P2
k
blowing up eight points p1, . . . , p4 and Tk contains precisely ten p´1q-curves:

the four exceptional divisors and the six strict transform of the lines through two of the
pi.

The case pP2, 1, 3q: Let T ÝÑ P2 be the blow-up of a rational point and a point of degree
3, and denote by E the exceptional divisor of the rational point and by E 11, E 12, E 13 the
geometric components of their exceptional divisor of the point of degree 3. Let L Ă T be
the pullback of a general line. The Galpk{kq-orbits of p´1q-curves in Tk are:

E, E11, . . . , E
1
3

`i :“ L´ E ´ E1i

`1i3 :“ L´ E1i1 ´ E
1
i2

E ¨ E1i “ E ¨ `1i “ 0

`i ¨ `
1
j “ E1i ¨ `j “ δij

F0{P1 F0{ pt F0{P1

T {P1 T { pt T {P1

F1{P1 F1{ pt Y1{ pt F1{ pt F1{P1

P1{ pt P2{ pt

`

`1

`

E1
E

`1

`

E1

E
`1 E1

E

for all i, j. By completing the contraction diagram starting from T , we obtain the above
diagram.

The case pP2, 2, 2q:
Let T ÝÑ P2 be the blow-up of two points of degree 2 and denote respectively by E1, E2

and E 11, E
1
2 the geometric components of their exceptional divisors. Let L Ă T be the

pullback of a general line. The only Galpk{kq-orbits of p´1q-curves in Tk with pairwise
disjoint members are:

E1, E2, E11, E
1
2

` :“ L´ E1 ´ E2, `1 :“ L´ E11 ´ E
1
2

` ¨ `1 “ 1, Ei ¨ `j “ E1i ¨ `
1
j “ 2

Ei ¨ E
1
j “ Ei ¨ `

1 “ E1i ¨ ` “ 0

S{P1 T {P1 S{P1

S{ pt T { pt S{ pt

Q{ pt Y7{ pt Y7{ pt Q{ pt

P2{ pt

`1 `

E

`1 `

E1E
E1

`1

E1 E

`

For all i, j. By completing the contraction diagram starting from T , we obtain the above
diagram.

The remaining case pQ, 1, 2q appears in pP2, 2, 2q.

A.2.6 Elementary relations dominated by a del Pezzo surface of
degree 6 or degree 7

Suppose that T { pt is a rank 3 fibration with K2
T “ 6. There is a birational morphism

Tk ÝÑ P2
k
blowing up eight points p1, . . . , p3 and Tk contains precisely six p´1q-curves:
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the three exceptional divisors and the three strict transform of the lines through two of
the pi.

The case pP2, 1, 2q:
Let T ÝÑ P2 be the blow-up of a rational point and a point of degree 2, and denote by E
the exceptional divisor of the rational point and by E 11, E 12 the geometric components of
their exceptional divisor of the point of degree 3. Let L Ă T be the pullback of a general
line. The Galpk{kq-orbits of p´1q-curves in Tk are:

E, E11, E
1
2

` :“ L´ E11 ´ E
1
2, `1i :“ L´ E ´ E1i

E ¨ E1i “ E ¨ ` “ `1i ¨ ` “ 0, i “ 1, 2

E1i ¨ `
1
j “ δij

F1{P1 S{P1 F1{P1

F1{ pt S{ pt F1{ pt

Y7{ pt Y7{ pt

P2{ pt Q{ pt P2{ pt

E1 `1

E

E1 `1

`E
`

E1 ` E `1

By completing the contraction diagram starting from T , we obtain the above diagram.
The remaining case pQ, 1, 1q appears in the above diagram.

The case pF0, 4q:
Let T ÝÑ F0 be the blow-up of a point of degree 2, and denote by E1, E2 the geometric
components of its exceptional divisor. Let F1, F2 the the classes of the fibres of the two
fibrations of F0. From Remark A.2.3 we obtain that the only Galpk{kq-orbits of p´1q-
curves in Tk of cardinalityď 3 are the following, where the number in parentheses indicates
the number of geometric components:

E1, E2

Cji :“ Fj ´ Ei

EiCjk “ δik

F0{P1 T {P1 F0{P1

F0{ pt T { pt F0{ pt

F0{P1 T {P1 F0{ pt T {P1 F0{P1

F0{P1 F0{P1

»

C2 C1

C1

`

C2

C2

`

C1

E

»

»

Suppose that T { pt is a rank 3 fibration with K2
T “ 7. Then it has precisely three

rational p´1q curves: E0, E1, E2, the contractions of which yield the following commutative
diagram, which is the case pP2, 1, 1q.

F0{P1 F0{P1

F0{ pt

T {P1 T {P1

F1{P1 T { pt F1{P1

F1{ pt F1{ pt

P2{ pt

E0

E2

E0

E1

E0

E1E1

E1 E2

This completes the list of elementary relations in BirMoripP2
kq for a perfect field k.
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