Übungsblatt 7

Exercice 1. Show that the set of $m \times n$ matrices of full rank is an open subset of $M_{mn}(\mathbb{R})$.

Exercice 2. We define the complex projective space as $\mathbb{CP}^n = (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$, where $x \sim y$ if there exists $\lambda \in \mathbb{C}^*$ such that $y = \lambda x$. The class of $x \in \mathbb{C}^{n+1} \setminus \{0\}$ is denoted by [x].

- (1) For i = 0, ..., n, let $U_i := \{ [x] \in \mathbb{CP}^n \mid x_i \neq 0 \}$ and $\varphi_i : U_i \longrightarrow \mathbb{C}^n$, $[x] \mapsto (x_0, ..., x_{i-1}, x_{i+1}, ..., x_n)$. Show that (U_i, φ_i) is a chart of \mathbb{CP}^n and that the family $\{(U_i, \varphi_i)\}_{i=0}^n$ provides a smooth atlas of \mathbb{CP}^n .
- (2) Show that the quotient map $\mathbb{C}^{n+1}\setminus\{0\} \longrightarrow \mathbb{CP}^n$, $x \mapsto [x]$, is a surjective smooth submersion. (3) Show that $\mathbb{CP}^1 \approx \mathbb{S}^1$.

Exercice 3. Let M be a smooth compact manifold. Show that there is no smooth submersion $F: M \longrightarrow \mathbb{R}^k$ for any $k \ge 1$.

Exercice 4. Suppose M, N are smooth manifolds, $U \subset M$ is open and $f : U \longrightarrow N$ is a smooth map. Let $\Gamma(f) \subset M \times N$ denote the graph of f:

$$\Gamma(f) = \{(x, y) \in M \times N \mid x \in U, y = f(x)\}.$$

Show that $\Gamma(f)$ is an embedded submanifold of $M \times N$.