Übungsblatt 13

Exercice 1. Let $D \subset \mathbb{C}$ be open and bounded and $f, g: \overline{D} \longrightarrow \mathbb{C}$ continuous and without zeros. Suppose that $f, g: D \longrightarrow \mathbb{C}$ are holomorphic and |f(z)| = |g(z)| for all $z \in \partial D$. Show that there exists $\lambda \in \mathbb{S}^1$ such that $f(z) = \lambda g(z)$ for all $z \in \overline{D}$.

Exercice 2. Let $p \in \mathbb{C}[z]$ be a non-constant polynomial. Show that $p(\mathbb{C}) = \mathbb{C}$.

Exercice 3.

- (1) Let p ∈ C[z] of degree deg(p) = n and let c₁,..., c_n ∈ C be its (not necessarily distinct) zeros. Show that ^{p'(z)}/_{p(z)} = ∑ⁿ_{j=1} 1/(z-c_j).
 (2) Let f: C → C be holomorphic and suppose it has only finitely many zeros c₁,..., c_n.
- (2) Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be holomorphic and suppose it has only finitely many zeros c_1, \ldots, c_n . Show that $\frac{f'(z)}{f(z)} = \sum_{j=1}^n \frac{1}{z-c_j}$ for all $z \in \mathbb{C} \setminus \{c_1, \ldots, c_n\}$ if and only if $f \in \mathbb{C}[z]$.

We assume the following theorem:

Theorem 0.1 (Riemann-Hurwitz). Let $f: X \longrightarrow Y$ be a non-constant holomorphic map between compact connected orientable Riemann surfaces. Then

$$2g(X) - 2 = d(2g(Y) - 2) + \sum_{p \in X} (\operatorname{ord}_p f - 1), \text{ where } d = \sum_{p \in f^{-1}(q)} \operatorname{ord}_p f \text{ for any } q \in Y.$$

Exercice 4. Let $f: X \longrightarrow Y$ be a non-constant holomorphic map between compact connected orientable Riemann surfaces.

- (1) Suppose that $X = \mathbb{P}^1_{\mathbb{C}}$. Show that Y is biholomorphic to $\mathbb{P}^1_{\mathbb{C}}$.
- (2) Suppose that g(X) = 1. Show that Y diffeomorphic to a torus or to a sphere.
- (3) Suppose that g(X) = g(Y) = 1. Show that f is a finite covering (without ramification).

Exercice 5.

- (1) Draw an example for the Riemann-Hurwitz theorem for each $d \ge 1$.
- (2) Draw an example for the Riemann-Hurwitz theorem with $g(Y) \ge 2$.