Übungsblatt 12

Exercise 1. Let $z \in \mathbb{C}^- := \mathbb{C} \setminus \mathbb{R}_{\leq 0}$ and γ a path from 1 to $z = r^{i\varphi}$. Compute that $\int_{\gamma} \frac{d\zeta}{\zeta} = \log(r) + i\varphi$.

Exercice 2. Let $D \subset \mathbb{C}$ be open and $f: D \longrightarrow \mathbb{C}$ a holomorphic map. Suppose that $f: D \longrightarrow f(D)$ is bijective. Show that f^{-1} is holomorphic.

Exercice 3. We define

$$J := \left\{ z \mapsto e^{i\varphi} \frac{z - w}{\bar{w}z - 1} \mid w \in B_1(0), \ 0 \leqslant \varphi < 2\pi \right\}, \qquad M := \left\{ B := \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \mid \det B = 1 \right\},$$
$$N := \left\{ B := \begin{pmatrix} \eta & -\eta w \\ \bar{w}z & -1 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \mid \det B = 1 \right\}$$

- (1) Show that for any $f, g \in J$, we have $f \circ g \in J$.
- (2) Show that any $f \in J$ is holomorphic, has an inverse, and f^{-1} is also holomorphic.
- (3) Show that $\{f \in J \mid f(0) = 0\} = \{z \mapsto -ze^{i\varphi} \mid 0 \leq \varphi < 2\pi\}.$
- (4) Show that there exists $a \in \mathbb{C}^*$ such that $a^2 = \frac{-\eta}{1-|w|^2}$
- (5) Show that $\begin{pmatrix} a & b \\ \overline{b} & \overline{a} \end{pmatrix} \in B$.
- (6) Show that for $s := \frac{\eta}{a} \in \mathbb{C}^*$, we have W = sB.

We assume the following three statements:

Theorem (Open Mapping theorem). Let $D \subset \mathbb{C}$ be open and $f: D \longrightarrow \mathbb{C}$ holomorphic. If f nowhere locally constant on D, then f is open.

Theorem (Liouville). Every bounded holomorphic map $f : \mathbb{C} \longrightarrow \mathbb{C}$ is constant.

Lemma (Growth Lemma). Let $p(z) = \sum_{k=0}^{n} a_k z^k \in \mathbb{C}[z]$ be a polynom of degree $n \ge 0$. Then there is R > 0, such that for all $z \in \mathbb{C}$ with $|z| \ge R$, we have $\frac{1}{2}|a_n||z|^n \le |p(z)| \le \frac{3}{2}|a_n||z|^n$ and $\lim_{|z| \longrightarrow \infty} \left| \frac{z^k}{p(z)} \right| = 0$ for $0 \le k < n$

Exercice 4. Show that every holomorphic map $f: \mathbb{C} \longrightarrow B_1(0)$ is constant. Conclude that there are no biholomorphic mapping of $\mathbb{H} \longrightarrow \mathbb{C}$ (where $\mathbb{H} \subset \mathbb{R}^2$ is the open upper halfplane).

Exercice 5. Show that any polynomial $p \in \mathbb{C}[t]$ has a zero in \mathbb{C} . *Hint: use Liouville's theorem and the Growth lemma*

Exercice 6. Let $D \subset \mathbb{C}$ be a connected open set and $f: D \longrightarrow \mathbb{C}$ a holomorphic map. Suppose f has a local maximum at the point $c \in D$ (i.e. $|f(c)| = ||f||_U$ for some neighbourhood $U \subset D$ of c). Show that f is constant on D.

Exercice 7. Let $D \subset \mathbb{C}$ be open and connected and $f: D \longrightarrow \mathbb{C}$ holomorphic. Let $U \subset D$ be open and assume that $\max_{z \in U} |f(z)|$ exists. Show that f is constant on D. *Hint: use the Open Mapping Theorem*