Bachelor Mathematik, Universität Basel, FS2024

Übungsblatt 10

Exercice 1. Let $n \in \mathbb{Z}$, r > 0 and $B_r(c) = \{z \in \mathbb{C} \mid |z - c| < r\} \subset \mathbb{C}$. Show that

$$\int_{\partial B_{r(c)}} (\zeta - c)^n d\zeta = \begin{cases} 0, & n \neq -1\\ 2\pi i, & n = -1 \end{cases}$$

Hint: parametrize $\partial B_r(c)$ *smartly.*

Exercice 2. Show that

$$\int_{\partial B_r(c)} \frac{1}{\zeta - z} d\zeta = \begin{cases} 1, & z \in B_r(c) \\ 0, & z \notin B_r(c) \end{cases}$$

Exercice 3. Let r, s > 0 and consider the rectangle $R = \{z \in \mathbb{C} \mid -r < \Re(z) < r, -s < \Im(z) < s\}$. Compute

$$\int_{\partial R} \frac{1}{\zeta} d\zeta.$$

Exercice 4. Let $D \subset \mathbb{C}$ be open and $f: D \longrightarrow \mathbb{C}$ continuous. Suppose that there is a holomorphic map $F: D \longrightarrow \mathbb{C}$ such that F' = f. Show that for every pair $w, z \in D$ and every (piecewise continuous differentiable) path γ in D with initial point w and endpoint z, we have

$$\int_{\gamma} f d\zeta = F(z) - F(w).$$

Exercice 5 (Integrability Criterion). Let $D \subset \mathbb{C}$ be open and $f: D \longrightarrow \mathbb{C}$ continuous. Show that the two following assertions are equivalent:

(1) there exists a complex differentiable map $F: D \longrightarrow \mathbb{C}$ such that F' = f;

(2) $\int_{\gamma} f d\zeta = 0$ for every closed (piecwise differntiable) path γ in D.

Hint 1: Suppose that (2) holds and that D is connected. Fix $z_0 \in D$. For every $z \in D$, let γ_z be a (piecwise differntiable path) from z_1 to z in D. Set $F(z) := \int_{\gamma_z} f d\zeta$, $z \in D$. Hint 2: use exercise 4.