Übungsblatt 1

Exercise 0.1. Let $(X, \tau), (Y, \tau_Y), (Z, \tau_Z)$ be topological spaces. Show that $(X \times Y) \times Z \simeq X \times (Y \times Z)$.

Exercise 0.2. We endow \mathbb{R} with its usual Euclidean topology. Show that the product topology on \mathbb{R}^n is the Euclidean topology.

Exercise 0.3. Show that $GL_n(\mathbb{R}) = \{\det \neq 0\} \subset M_n(\mathbb{R})$ is open in the Euclidean Topology.

Exercise 0.4. Let X be a topological space and $\mathcal{X} = \{X_{\alpha}\}_{\alpha \in A}$ a locally finite family of subsets of X. Show that $\{\overline{X_{\alpha}}\}_{\alpha \in A}$ is locally finite and that $\overline{\bigcup_{\alpha} X_{\alpha}} = \bigcup_{\alpha} \overline{X_{\alpha}}$.

Exercise 0.5. (Problem 1.1 in Lee) Define the line with two origins (I will not do it in the course). Show that it is non-Hausdorff, and that is locally Euclidean and second-countable.

Examples of Manifolds:

Exercise 0.6. Show that the sphere $\mathbb{S}^n = \{x_1^2 + \dots + x_{n+1}^2 = 1\} \subset \mathbb{R}^{n+1}$ is an *n*-dimensional smooth manifold (using the stereographic projection). Use the stereographic projection $\mathbb{S}^n \setminus \{(0, \dots, 0, 1)\} \longrightarrow \mathbb{R}^n, x \mapsto \frac{1}{1-x_{n-1}}(x_1, \dots, x_n)$, whose inverse is

$$y \mapsto \frac{1}{|y|^2 + 1} (2y_1, \dots, 2y_n, |y|^2 - 1)$$

Exercise 0.7. Show that any finite dimensional linear vector space is a smooth manifold. In particular, $M_n(\mathbb{R})$ and $\operatorname{GL}_n(\mathbb{R})$ are smooth manifolds.

Exercise 0.8. Define the real projective space $\mathbb{R}^n \mathbb{P}^n := \mathbb{R}^{n+1} \setminus \{0\} / \sim$, where $x \sim y$ if there exists $\lambda \in \mathbb{R}^*$ such that $y = \lambda x$. Show that it is a smooth manifold.