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Abstract. We classify birational involutions of the real projective plane up to conju-
gation. In contrast with an analogous classification over the complex numbers (due to
E. Bertini, G. Castelnuovo, F. Enriques, L. Bayle and A. Beauville), which includes 4
different classes of involutions, we discover 12 different classes over the reals, and provide
many examples when the fixed curve of an involution does not determine its conjugacy
class in the real plane Cremona group.
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1. Introduction

1.A. Bertini, Bayle and Beauville. Classification of finite subgroups in the plane Cre-
mona group Bir(P2

C), i.e. the group of birational automorphisms of the complex projective
plane, is a very classical problem which goes back to the works of E. Bertini and the Ital-
ian school of algebraic geometry. Bertini was interested in the description of involutions
inside this group and discovered three types of them, which are known today as de Jon-
quières, Geiser and Bertini involutions. However, Bertini’s classification was known to be
incomplete and it required more than a century to get a really precise statement. Using an
equivariant version of Mori theory in dimension two, L. Bayle and A. Beauville obtained
the following elegant classification:

Theorem 1.1 ([2]). Every birational involution in Bir(P2
C) is conjugate to one and only

one of the following involutions:

(1) A linear involution acting on P2
C.
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(2) A de Jonquières involution of genus g > 1, i.e. an involution given in affine
coordinates by

χ : (x, y) 7→
(
x,
f(x)

y

)
with f(x) being a polynomial of degree d = 2g + 1 with no multiple factors.

(3) A Bertini involution.
(4) A Geiser involution.

Except for the case (1), all these involutions have moduli [2]. Namely, conjugacy classes
of de Jonquières involutions of genus g > 1 are parametrized by hyperelliptic curves of
genus g > 1. Conjugacy classes of Geiser involutions are parametrized by non-hyperelliptic
curves of genus 3, and conjugacy classes of Bertini involutions are parametrized by non-
hyperelliptic curves of genus 4 whose canonical model lies on a singular quadric.

The goal of this article is to demonstrate that classification of birational involutions of
the projective plane over the field R of real numbers is a much more subtle problem.

1.B. The real plane Cremona group. In general, the Cremona group of the real
projective plane enjoys many interesting properties which are quite different from the
properties of its complex counterpart. Recall that the famous theorem of Noether and
Castelnuovo states that Bir(P2

C) is generated by its subgroup Aut(P2
C) ∼= PGL3(C) and

the standard Cremona involution

σ0 : [x : y : z] 99K [yz : xz : xy].

This is not enough to generate Bir(P2
R): both linear transformations and the Cremona

involution have real indeterminacy points, hence the same is true for any composition of
these maps, while the Apollonius’ circle inversion

σ1 : [x : y : z] 99K [y2 + z2 : xy : xz].

is not defined at [0 : 1 : i], [0 : 1 : −i], [1 : 0 : 0]. Another example of a real birational
map which cannot be a composition of linear transformations and σ0 can be obtained
as follows: start with three pairs of complex conjugate points on P2

R in general position,
blow them up to get a real cubic surface and then blow down the strict transforms of the
conics passing through five of the six points. Such birational self-maps of P2

R are called
standard quintic transformations. In fact, the group Bir(P2

R) is generated by Aut(P2
R), σ0,

σ1 and standard quintic transformations [4].
As the group Bir(P2

C), the real Cremona group Bir(P2
R) is also generated by involu-

tions [36]. On the other hand, the abelianization of the group Bir(P2
R) is the infinite

sum
⊕

(0,1] Z/2Z [37], which is absolutely not the case over the complex numbers: the

abelianization of Bir(P2
C) is trivial.

In this paper, we are interested in classification of finite subgroups of Bir(P2
R). Their

study was initiated in [34, 28] and continued in [33]. In those papers, a big part of
the classification was obtained, including complete classification of finite subgroups of
BirR(P2

R) of odd order. However, the case of involutions remained unsolved. The goal of
this paper is to fill this gap.
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1.C. Regularization. Recall the general approach to classification of finite subgroups
in Cremona groups (for more details see [9, 3]). Let G be a finite subgroup of Bir(P2

R).
Then there exists an R-rational smooth projective surface X, an injective homomorphism
ι : G → Aut(X) and a birational G-equivariant R-map ψ : X 99K P2

R, such that G =
ψ◦ι(G)◦ψ−1. One says that G is regularized on X. Vice versa, for an R-rational G-surface
X a birational map ψ : X 99K P2

R yields an injective homomorphism G ↪→ Bir(P2
R) given

by g 7→ ψ ◦ g ◦ ψ−1.
Two finite subgroups of Bir(P2

R) are conjugate if and only if the corresponding smooth
R-rational G-surfaces are G-birationally equivalent, so there is a natural bijection be-
tween the conjugacy classes of finite subgroups G ⊂ Bir(P2

R) and classes of G-birational
equivalence of smooth R-rational G-surfaces.

Moreover, applying a G-equivariant version of the Minimal Model Program, we may
further assume that X admits a structure of a G-Mori fiber space. This simply means
that one of the following two cases hold:

(1) either Pic(X)G ' Z2 and there exists a G-equivariant conic bundle X → P1
R,

(2) or Pic(X)G ' Z and X is a smooth del Pezzo surface.

Therefore, the classification of finite subgroups of Bir(P2
R) is equivalent to G-birational

classification of such two-dimensional R-rational G-Mori fibre spaces. In the second case,
a fairly detailed description of such pairs (X,G) has been given in [33].

1.D. Fixed curves of birational involutions. For a birational involution ι ∈ Bir(P2
R)

and its regularization τ ∈ Aut(X) on some smooth R-rational surface X, let us denote
by F (τ) the union of all geometrically irrational real curves in the surface X that are
pointwise fixed by the involution τ . If there are no such curves, we let F (τ) = ∅. In fact,
a non-empty F (τ) consists of a unique geometrically irreducible smooth real curve in X,
see Lemma 2.7. Moreover, up to an isomorphism, the fixed curve F (τ) does not depend
on the choice of the regularization, so that this real curve depends only on the conjugacy
class of the involution ι ∈ Bir(P2

R). Thus, we say that F (ι) = F (τ) is the fixed curve of
the involutions ι and τ .

One can always consider ι as a birational involution of the complex projective plane.
Then, as an element of the complex Cremona group Bir(P2

C), the involution ι is uniquely
determined by its fixed curve up to a conjugation [2]. In particular, F (ι) = ∅ if and only
if ι is conjugated in Bir(P2

C) to the linear involution [x : y : z] 7→ [x : y : −z]. In the real
Cremona group Bir(P2

R) this is no longer true: we cannot always recover the conjugacy
class of an involution in the real Cremona group from its fixed curve.

Example 1.2 ([31, Example 6.1], [33, Example 1.4]). Let Zn be the surface in P2
R × P1

R
that is given by

x2

2n∏
k=1

(t20 + k2t21) + y2t4n0 + z2t4n1 = 0,

where ([x : y : z], [t0 : t1]) are coordinates on P2
R × P1

R. Then Zn is rational over R.
Let τn ∈ Aut(Zn) be the involution induced by the map [t0 : t1] 7→ [−t0 : t1] and let ιn
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be the corresponding birational involution of P2
R. Note that F (τn) = ∅. On the other

hand, the involutions ιi and ιj are non-conjugate in Bir(P2
R) for i 6= j. See Section 3, for

generalizations.

In this paper, we classify birational involutions in Bir(P2
R), and construct uncountably

many non-conjugate birational involution in Bir(P2
R) that all have the same fixed curve,

geometrically rational or not.

1.E. Classification. The main result of this paper, Main Theorem below, shows that
classification of involutions in the real plane Cremona group is quite sophisticated and
differs drastically from the one over C. To state it, we will use the language of R-rational
G-surfaces introduced in Section 1.C, and notions of exceptional/non-exceptional G-conic
bundles, see Sections 6 and 7 for precise definitions. So, our approach goes along the lines
of the approach in [9, 2].

Main Theorem. Let ι be an involution in Bir(P2
R). Then ι admits a regularization

τ ∈ Aut(S) such that S is a smooth real projective rational surface, where S and the
subgroup G = 〈τ〉 belong to one of the following classes, which we consider as classes of
birational involutions in Bir(P2

R).

(L) The surface S is P2
R, τ is the linear involution [x : y : z] 7→ [x : y : −z], and

F (τ) = ∅.
(Q) The surface S is a quadric surface in P3

R, τ is an automorphism, F (τ) = ∅ and
S(R)τ = ∅.

(T4n) The surface S admits a G-equivariant morphism S → P1
R that is a conic bundle

with 4n > 4 singular fibers, Pic(S)G ' Z2, the involution τ is a 0-twisted Trepalin
involution, and F (τ) = ∅.

(T′4n+2) The surface S admits a G-equivariant morphism S → P1
R that is a conic bundle

with 4n+ 2 > 6 singular fibers, Pic(S)G ' Z2, τ is a 1-twisted Trepalin involution,
and F (τ) = ∅.

(T′′4n) The surface S admits a G-equivariant morphism S → P1 that is a conic bundle
with 4n > 4 singular fibers, Pic(S)G ' Z2, τ is a 2-twisted Trepalin involution,
and F (τ) = ∅.

(B4) The surface S is a del Pezzo surface of degree 1, Pic(S)G ' Z, the involution τ
is the Bertini involution of the surface S, and F (τ) is a non-hyperelliptic curve of
genus 4.

(G3) The surface S is a del Pezzo surface of degree 2, Pic(S)G ' Z, the involution τ
is the Geiser involution of the surface S, and F (τ) is a non-hyperelliptic curve of
genus 3.

(K1) The surface S is a del Pezzo surface of degree 2, Pic(S)G ' Z, the involution τ is
a Kowalevskaya involution of the surface S, and F (τ) is a genus 1 curve.

(dJg) The surface S admits a G-equivariant morphism S → P1
R that is a G-exceptional

conic bundle with 2g + 2 singular fibers, Pic(S)G ' Z2, the involution τ is a
de Jonquières involution, and F (τ) is a hyperelliptic curve C of genus g > 1.
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(Ig) The surface S admits a G-equivariant morphism S → P1
R that is a non-G-

exceptional conic bundle with 2g+ 2 singular fibers, Pic(S)G ' Z2, the involution
τ is a 0-twisted Iskovskikh involution, and F (τ) is a hyperelliptic curve C of genus
g > 1.

(I′g) The surface S admits a 〈τ〉-equivariant morphism S → P1
R that is a non-G-

exceptional conic bundle with 2g+ 3 singular fibers, Pic(S)G ' Z2, the involution
τ is a 1-twisted Iskovskikh involution, and F (τ) is a hyperelliptic curve C of genus
g > 1.

(I′′g) The surface S admits a G-equivariant morphism S → P1
R that is a non-G-

exceptional conic bundle with 2g+ 4 singular fibers, Pic(S)G ' Z2, the involution
τ is a 2-twisted Iskovskikh involution, and F (τ) is a hyperelliptic curve C of genus
g > 1.

Moreover, birational involutions contained in distinct classes L, Q, T4n, T′4n+2, T′′4n, B4,
G3, K1, dJg, Ig, I′g, I′′g are not conjugate in Bir(P2

R) with the only possible exception:
involutions in dJ1 and I1 may be conjugate (see Example 8.6).

We refer the reader to Sections 4, 5, 6, 7, for a more explicit description of the birational
involutions in the classes L, Q, T4n, T′4n+2, T′′4n, B4, G3, K1, dJg, Ig, I

′
g, I

′′
g . In Section 8.B,

we also explain how to determine whether two given birational involutions contained in
one class among T4n with n > 2, T′4n+2, T′′4n with n > 2, B4, G3, K1, dJg with g > 2, Ig
with g > 2, I′g, I

′′
g are conjugate or not. Using this, we obtain

Main Corollary. Let C be a real smooth projective hyperelliptic curve of genus g > 2
such that the locus C(R) consists of at least 2 connected components. Then Bir(P2

R)
contains uncountably many non-conjugate involutions that all fix a curve isomorphic to
the curve C. Besides, the real plane Cremona group Bir(P2

R) contains uncountably many
non-conjugate involutions that fix no geometrically irrational curves.

Recently there have been new developments in the study of embedding of finite groups
into Cremona groups. In particular, new obstructions and invariants were introduced
in the works of Kontsevich-Pestun-Tschinkel [19], Kresch-Tschinkel [20, 21] and Hassett-
Kresch-Tschinkel [23]; see also references therein. It would be very interesting to apply
these new techniques to conjugacy problems in Cremona groups over non-closed fields,
including the case of real numbers, considered in this paper.
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lamov for very fruitful discussion of real plane curves, and Alexander Merkurjev, Alexan-
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2. Equivariant Minimal Model Program

In this section, we collect some preliminary information about real algebraic surfaces,
admitting a structure of a G-Mori fiber space. Namely, let S be a real geometrically
rational algebraic surface such that S(R) 6= ∅. Then the Galois group Gal(C/R) acts on
SC = S ×SpecR SpecC by the complex conjugation.

Fix a finite subgroup G ⊂ Aut(S). We say that S a G-minimal del Pezzo surface if
S is a del Pezzo surface, i.e. the divisor −KS is ample, and Pic(S)G ' Z. Similarly, we
say that a S admits a G-conic bundle structure if there exists a flat surjective morphism
π : S → P1

R such that each scheme fibre of π is isomorphic to a reduced conic in P2
R. It

will be called a G-minimal conic bundle if Pic(S)G ' Z2. Note that a G-minimal conic
bundle is not necessarily G-minimal in the sense of [9].

As we already mentioned in Section 1.C, in the remaining part of the paper, we may
work with these two classes of surfaces, G-minimal del Pezzo surfaces and G-minimal
conic bundles.

2.A. Real rational surfaces. As above, let S be a real geometrically rational algebraic
surface such that S(R) 6= ∅. Recall that the surface S is said to be R-rational if there
exists a birational map S 99K P2

R. We have the following rationality criterion:

Theorem 2.1 ([30, 25]). A real geometrically rational surface S is R-rational if and only
if its real locus S(R) is connected.

In what follows, we denote by Q3,1 the smooth quadric surface {x2+y2+z2 = w2} ⊂ P3
R,

and we denote by Q2,2 the smooth quadric surface {x2 + y2 = z2 + w2} ⊂ P3
R. For a real

del Pezzo surface S, we denote by S(a, b) the blow-up of S at a real points and b pairs of
complex conjugate points. If S is an R-rational del Pezzo surface, its real locus S(R) is
diffeomorphic to one of the following manifolds:

(1) a sphere S2 if X ' Q3,1(0, b);
(2) a torus S1 × S1 if X ' Q2,2(0, b);
(3) a connected sum N g = #gRP2 if X ' P2

R(a, b) where g = a+ 1 and 1 6 g 6 9.

For more details, see [17] or [25].

Proposition 2.2 ([17, Theorem 2.2], [25, Theorem 4.4.14]). Let π : S → P1
R be a conic

bundle such that Pic(S) ∼= Z2. If π has real singular fibers (i.e. singular fibers lying over
points of P1

R(R)), then it has an even number 2m of them and

S(R) ≈
m⊔
i=1

S2.
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Otherwise, S(R) is either a torus S1 × S1 or a Klein bottle #2RP2. Moreover, S is R-
rational if and only if it is isomorphic to one of the following surfaces: a real del Pezzo
surface Q3,1(0, 1) of degree 6 (then S(R) ≈ S2), a real Hirzebruch surface F2n+1 (then
S(R) ≈ #2RP2) or a real Hirzebruch surface F2n (then S(R) ≈ S1 × S1).

Remark 2.3. If the conic bundle π : S → P1
R in Proposition 2.2 has at least one singular

fibre, then π(S(R)) is a union of intervals and their boundary points are exactly the images
of real singular fibres whose components are permuted by the Galois group Gal(C/R). If
S = Q3,1(0, 1) then π(S(R)) is an interval in P1

R(R). If S = Fn then π(S(R)) = P1
R(R).

Finally, there is a characterization of minimal rational surfaces due to Iskovskikh:

Theorem 2.4 ([15, §4]). A minimal geometrically rational surface X over a perfect field
k is k-rational if and only if the following two conditions are satisfied:

(i): X(k) 6= ∅;
(ii): d = K2

X > 5.

2.B. Fixed curves of birational maps. In the remaining part of this section, let us
assume that S is a smooth projective R-rational surface and τ ∈ Aut(S) is an involution.

Lemma 2.5. Let C1, . . . , Cn be irreducible curves on S which are pointwise fixed by τ .
Then each Ci is smooth, and Ci ∩ Cj = ∅ for i 6= j.

Proof. Suppose that p ∈ S is a singular point of the curve Ci. Then G = 〈τ〉 acts on TpS
by an involution different from the identity. At the same time G induces the identity on
the tangent directions of Ci at the point p of which there are at least two because p is
singular. This is impossible. The same argument works if p is the intersection point of
some Ci and Cj, i 6= j. �

The following definition plays the key role in this paper.

Lemma-Definition 2.6 (The fixed curve of a birational involution [10, 3]). Con-
sider a birational involution ι ∈ Bir(P2

R) and its regularization τ ∈ Aut(S). Denote by
F (τ) the union of all geometrically non-rational real curves on the surface S which are
pointwise fixed by τ . If there are no such curves, we let F (τ) = ∅. Then

• either F (τ) = ∅,
• or F (τ) consists of a unique geometrically irreducible smooth real curve in S by

Lemma 2.7 below.

Moreover, the fixed curve F (τ) does not depend on the choice of the regularization, so that
this real curve depends only on the conjugacy class of the birational involution ι ∈ Bir(P2

R).
Thus, we say that F (τ) is the fixed curve of the involutions ι and τ .

Lemma 2.7. Suppose that F (τ) 6= ∅. Then F (τ) consists of one smooth geometrically
irreducible curve. Moreover, if π : S → P1

R is a conic bundle then τ acts trivially on
the base P1

R and F (τ) is a double section of π.
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Proof. If τ acts on a del Pezzo surface with Pic(S)τ ∼= Z then the assertion follows from
Lemma 2.5. Thus, we may assume that there exists a τ -equivariant conic bundle π : S →
P1
R such that Pic(S)τ ' Z2. Let C be a curve in S such that each irreducible component

of the curve CC is irrational and pointwise fixed by τ . Then C is smooth by Lemma 2.5,
and moreover, it must be a multi-section of the conic bundle π, so that the action of
the involution τ on the base of the conic bundle π is trivial. Hence, the involution τ
acts faithfully on a general fiber of π, so it fixes two points on it. This implies that C
is a double section of the conic bundle π. Since all components of C are geometrically
irrational, it follows that C is irreducible. �

2.C. Birational rigidity. To get the conjugacy classes of involutions in Bir(P2
R), one

should classify G-Mori fiber spaces up to G-birational equivalence for G = 〈τ〉. The
results recalled in this sections are valid over any perfect field. In this subsection, we
denote by k a perfect field and any birational map and any surface in this subsection is
defined over k, as in [15]. Some G-Mori fiber spaces admit very few G-birational maps:

Theorem 2.8 (Manin–Segre). Let S be a smooth del Pezzo surface, and let G be
a finite subgroup in Aut(S) such that Pic(S)G ' Z. If K2

S 6 3, then S is the only G-Mori
fiber space that is G-equivariantly birational to S. If K2

S = 1, then any G-equivariant
map S 99K S is an automorphism.

Proof. Any G-birational map to another G-Mori fibre space S ′ decomposes into G-
equivariant Sarkisov links and isomorphisms (see e.g. [7, Appendix] or [15]). For any
link χ : S 99K S ′, there exists a commutative diagram

S ′′

α

~~

α′

  
S

χ // S ′

where α, α′ are birational morphisms and S ′, S ′′ are del Pezzo surfaces as well. This yields
the claim if K2

S = 1. If K2
S ∈ {2, 3}, then up to automorphisms of S, any such link is

a Bertini or Geiser involution [15, Theorem 2.6], i.e. there exists a biregular involution
σ ∈ Aut(S ′′) and an automorphism δ ∈ Aut(S) such that χ = α′ ◦ σ ◦ α−1 ◦ δ. Thus,
in particular, we have S ′ ' S. Moreover, since σ centralizes G, we conclude that S ′ is
G-equivariantly isomorphic to S, cf. [22]. �

The assertion of this result brings us to

Definition 2.9 ([6, Definition 3.1.1]). Let S be a del Pezzo surface, and let G be a finite
subgroup in Aut(S) such that Pic(S)G ' Z. One says that S is G-birationally rigid if it
is the only G-Mori fiber space that is G-equivariantly birational to S. If in addition, we
have BirG(S) = AutG(S), then we say that S is G-birationally super-rigid.

Here BirG(S) is the subgroup in Bir(S) consisting of all G-birational selfmaps of the sur-
face S, which is isomorphic to the normalizer of the subgroup G in Bir(S) ' Bir(P2

k).
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Theorem 2.10 ([12]). Let S be a smooth projective surface, and letG be a finite subgroup
in Aut(S). Suppose that there is a G-conic bundle π : S → P1

k such that Pic(S)G ' Z2,
and K2

S 6 0. Then the following two assertions hold:

(i) S is not G-birational to a real smooth (weak) del Pezzo surface;

(ii) for every G-birational map S 99K Ŝ defined over k such that there is a G-conic

bundle π̂ : Ŝ → P1
k, there exists a G-equivariant commutative diagram

(2.11) S

π
��

// Ŝ

π̂
��

P1
k

υ // P1
k

for some isomorphism υ : P1
k → P1

k.

Proof. We only prove the assertion (i), since the proof of the assertion (ii) is similar [12].
Suppose that there exists aG-equivariant birational map χ : S 99K X, whereX is a smooth
weak del Pezzo surface. Let us seek for a contradiction.

Let MX = | − nKX | for n � 0, let MS be its proper transform on the surface S.
Now, choose λ ∈ Q>0 such that KS + λMS ∼Q π

∗(D) for some Q-divisor D on P1. Such
λ does exist, because Pic(S)G ' Z2. Then

0 6 λ2M1 ·M2 =
(
π∗(D)−KS

)2

= −2KS · π∗(D) +K2
S = 4deg

(
D
)

+K2
S 6 4deg

(
D
)

for two general curves M1 and M2 in MS. Hence, we see that deg(D) > 0.
Observe that there exists G-equivariant commutative diagram

Y
α

��

β

  
S

χ // X

where Y is a smooth surface, and α and β are G-equivariant birational morphisms that
do not have common exceptional curves. Let MY be the proper transform of the linear
system MX on the surface Y . Then

α∗
(
KS + λMS

)
+

k∑
i=1

aiEi ∼Q KY + λMY ∼Q β
∗(KX + λMX

)
+

m∑
i=1

biFi

for some rational numbers a1, . . . , ak, b1, . . . , bm, where each Ei is an α-exceptional curve
that is irreducible over R, and each Fi is a β-exceptional curve that is irreducible over R.
Moreover, since MX is base point free, we see that bi > 0. Thus, we have

(2.12) (π ◦ α)∗
(
D
)

+
k∑
i=1

aiEi ∼Q (λn− 1)β∗
(
−KX

)
+

m∑
i=1

biFi.

If λ > 1
n
, then the divisor in the right hand side of (2.12) is big, while the divisor in

the left hand side of (2.12) is not big. Hence, we conclude that λ 6 1
n
.
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Suppose that the singularities of the (mobile) log pair (S, λMS) are not canonical.
Then it follows from [7, Proof of Theorem 5.4 for surfaces] that there is a G-equivariant
commutative diagram

S

π
��

ζ // Ŝ

π̂
��

P1
k P1

k

such that ζ is a birational map, the surface Ŝ is smooth, π̂ is a conic bundle, Pic(Ŝ)G ' Z2,

and the log pair (Ŝ, λMŜ) has at most canonical singularities, where MŜ is the proper

transform of the linear system MS on the surface Ŝ. Note also that K2
Ŝ

= K2
S 6 0,

because δ can be decomposed into elementary transformations, see [15] or [7, Appendix].

Therefore, we can swap the surfaces S and Ŝ and replace the birational map χ by χ◦ ζ−1.
Then we may assume that the log pair (S, λMS) has canonical singularities.

Since (S, λMS) has canonical singularities, all the numbers a1, . . . , an are non-negative.
Since deg(D) > 0, in the left hand side of (2.12), we have a pseudoeffective divisor, which
implies that λ = 1

n
and D ∼Q 0. Now, since the intersection form of the curves E1, . . . , Ek

and the intersection form of the curves F1, . . . , Fm are negative definite, it follows from
(2.12) that

k∑
i=1

aiEi =
m∑
i=1

biFi.

But α and β do not have common exceptional curves by our assumption, so that m = 0.
This means that β is an isomorphism. Then K2

X = K2
Y 6 K2

S 6 0, which is absurd as X
is weak del Pezzo. �

2.D. Sarkisov theory. The main tool for exploring conjugacy in Cremona groups is
the Sarkisov program. For example, it will be especially useful for us to be able to
decompose the birational maps (2.11) into a sequence of elementary transformations,
Sarkisov links of type II. The main reference used in this paper is a classical treatment
by Iskovskikh [15], where G is assumed to be the (absolute) Galois group of the base
field. It is straightforward to transfer the whole theory to the mixed case, i.e. when both
geometric and the Galois group come into the picture.

So, we work in the category of G-surfaces over R. Then any birational G-map between
two G-surfaces can be decomposed into a sequence of birational G-morphisms and their
inverses. One can blow up G-orbits of real points and pairs of complex conjugate points.
In this paper, we work with rational G-minimal del Pezzo surfaces and G-minimal conic
bundles (in the sense defined above). They are rational G-Mori fiber spaces π : S → C,
where C is a point in the del Pezzo case, and C = P1

R in the conic bundle case. Let
π : S → C and π′ : S ′ → C ′ be two-dimensional G-Mori fiber spaces. Then every G-
birational map f : S 99K S ′ can be factorized into a composition of Sarkisov links of four
types whose complete description can be found in [15].
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Remark 2.13. Suppose that π : S → P1
R is a G-minimal conic bundle and ϕ : S 99K S ′ a

G-birational map to a G-minimal conic bundle. If K2
S 6 4, then classification of Sarkisov

links [15, Theorem 2.6] and Theorem 2.10 imply that ϕ is the composition of elementary
transformations, exchanges of two conic bundle structures on a del Pezzo surface of degree
4, 2 or 1 (it is an automorphism in the last two cases) or η′ ◦ α ◦ η−1, where η and η′ are
the contraction of a G-invariant real line in a cubic surface and α is a birational Bertini
or Geiser involution (if non-trivial). In particular, one has K2

S′ = K2
S.

3. Trepalin involutions

Now, we present three constructions of birational involutions of the real projective
plane that do not fix irrational curves. These constructions are inspired by Example 1.2.
Because of this, we will call the corresponding involutions (0-twisted , 1-twisted , 2-twisted)
Trepalin involutions.

3.A. First construction (0-twisted Trepalin involutions). Let Y be the affine sur-
face in A3

R given by

(3.1) x2 + y2 + (t− ε1)(t− ε2) · · · (t− ε2r) = 0

where ε1 < ε2 < · · · < ε2r are real numbers and r > 1 and πY : Y → A1
R be the map given

by (x, y, t) 7→ t. Then there exists a commutative diagram:

Y

πY
��

� � // X

πX
��

A1
R
� � // P1

R

whereX is a real smooth projective surface with Pic(X) ∼= Z2, both Y ↪→ X and A1
R ↪→ P1

R
are open immersions, and πX is a conic bundle such that π−1

X ([1 : 0]) is a smooth conic
that does not have real points. By construction, the conic bundle πX has 2r singular
fibers, which are fibers over the points [ε1 : 1], [ε2 : 1], . . . , [ε2r : 1]. The real locus X(R) is
a disjoint union of r > 1 spheres, so that the surface X is R-rational if and only if r = 1.

Now, we let U be the affine surface in A4
R given by

(3.2)

{
x2 + y2 + (t− ε1)(t− ε2) · · · (t− ε2r) = 0,

w2 + (t− λ1)(t− λ2) = 0,

where λ1 < λ2 are real numbers such that λ1 6= ε1 < λ2 < ε2, and x, y, w, t are
coordinates on A4

R. Let θ : U → Y be the morphism given by (x, y, w, t) 7→ (x, y, t). Then
θ is a double cover branched over the fibers π−1

Y (λ1) and π−1
Y (λ2). Moreover, we have the
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following commutative diagram:

(3.3) Uθ

��

� � // S

ϑ
ww

πS

��

Y

πY
��

� � // X

πX
��

A1
R
� � // P1

R P1
R

ωoo

where S is a real smooth projective surface, the morphism ϑ is a double cover branched
over the smooth fibers π−1

X ([λ1 : 1]) and π−1
X ([λ2 : 1]), the morphism ω is a double cover

branched over the points [λ1 : 1] and [λ2 : 1], and πS is a conic bundle with 4r singular
fibers, so K2

S = 8 − 4r 6 4. Let τ be the Galois involution of the cover ϑ and G = 〈τ〉.
Then one has rk Pic(S)G = rk Pic(X) = 2. Moreover, if ε1 < λ1, then S(R) ≈ S1 × S1,
and if λ1 < ε1, then S(R) ≈ S2. In both cases, the surface S is R-rational by Theorem
2.1. Therefore, the involution τ induces a birational involution ι ∈ Bir(P2

R). The τ -fixed
locus in S consists of the fibers π−1

S ([λ1 : 1]) and π−1
S ([λ2 : 1]), so F (ι) = F (τ) = ∅.

The involution τ and the corresponding birational involution in Bir(P2
R) will both be

called 0-twisted Trepalin involution with 4r singular fibers. The class of such birational
involutions in Bir(P2

R) will be denoted by T4r.

3.B. Second construction (1-twisted Trepalin involutions). Let us use all assump-
tions and notations of Section 3.A. Now, we let U ′ be the affine surface in A4

R given
by

(3.4)

{
x2 + y2 + (t− ε1)(t− ε2) · · · (t− ε2r) = 0,

w2 + (t− λ′1)(t− λ′2) = 0,

where λ′1, λ′2 are real numbers such that either ε1 6= λ′1 < ε2 and λ′2 = ε2, or ε1 < λ′1 < ε2

and λ′2 = ε3. Let θ′ : U ′ → Y be the morphism given by (x, y, w, t) 7→ (x, y, t). Then θ′ is
a double cover branched over the fibers π−1

Y (λ1) and π−1
Y (λ2). Since π−1

Y (λ2) is singular, we
see that the surface U ′ has an ordinary double point at the point (x, y, w, t) = (0, 0, 0, λ2).
We have the following commutative diagram:

(3.5) S̃ ′

α

��

β

��
U ′θ′

��

� � // S ′

ϑ′
xx

πS′

��

Ŝ ′

π
Ŝ′

��

Y

πY
��

� � // X

πX
��

A1
R
� � // P1

R P1
R

ω′
oo P1

R



BIRATIONAL INVOLUTIONS OF THE REAL PROJECTIVE PLANE 13

where S ′ is a real projective surface that is smooth along S ′ \ U ′, the morphism ϑ′ is a
double cover branched over the fibers π−1

X ([λ1 : 1]) and π−1
X ([λ′2 : 1]), the morphism ω′ is a

double cover branched over the points [λ′1 : 1] and [λ′2 : 1], the morphism α is the blow up
of the singular point of the surface S ′, and β is the contraction of the proper transform

of the fiber π−1
S′ ([λ′2 : 1]) to a pair of complex conjugate non-real points. Then Ŝ ′ is a

smooth projective surface, πŜ′ is a conic bundle that has 4r − 2 > 2 singular fibers, so
that K2

Ŝ′ = 10− 4r 6 6.

Let τ ′ be the Galois involution of the double cover ϑ′. Set G′ = 〈τ ′〉. Then

rk Pic(Ŝ ′)G
′
= 2. We observe that Ŝ ′(R) is homeomorphic to the real locus of the minimal

resolution of U ′. Therefore, we have the following possibilities:

• If λ′2 = ε2, ε1 < λ′1 < ε2, then Ŝ ′(R) ≈ S1 × S1.

• If λ′2 = ε2, λ′1 < ε1, then Ŝ ′(R) ≈ S2.

• If λ′2 = ε3, ε1 < λ′1 < ε2, then Ŝ ′(R) ≈ S2.

In all cases, the surface Ŝ ′ is R-rational by Theorem 2.1. Thus, the involution τ ′ induces
a birational involution ι′ ∈ Bir(P2

R). The τ ′-fixed locus consists of the fiber π−1

Ŝ′ ([λ1 : 1])

and a pair of complex conjugate non-real points contained in the fiber π−1

Ŝ′ ([ε′2 : 1]), which

implies that F (ι′) = F (τ ′) = ∅.
If r > 2, the involution τ ′ and the corresponding birational involution in Bir(P2

R) will
be both called 1-twisted Trepalin involution with 4r− 2 singular fibers. The class of such
birational involutions in Bir(P2

R) will be denoted by T′4r−2.

3.C. Third construction (2-twisted Trepalin involutions). Let us use all assump-
tions and notations of Section 3.A. Now, we let U ′′ be the affine surface in A4

R given
by

(3.6)

{
x2 + y2 + (t− ε1)(t− ε2) · · · (t− ε2r) = 0,

w2 + (t− λ′′1)(t− λ′′2) = 0,

such that either λ′′1 = ε1 and λ′′2 = ε2, or λ′′1 = ε1 and λ′′2 = ε3. Let θ′′ : U ′′ → Y be
the morphism given by (x, y, w, t) 7→ (x, y, t). Then θ′′ is a double cover branched over
the singular fibers π−1

Y (λ′′1) and π−1
Y (λ′′2), so that the surface U ′′ has two ordinary double

points: (0, 0, 0, λ′′1) and (0, 0, 0, λ′′2). Now, we have the following commutative diagram:

(3.7) S̃ ′′

γ

~~

δ

  
U ′′θ′′

��

� � // S ′′

ϑ′′
xx

πS′′

��

Ŝ ′′

π
Ŝ′′

��

Y

πY
��

� � // X

πX
��

A1
R
� � // P1

R P1
R

ω′′
oo P1

R
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where S ′′ is a real projective surface that is smooth along S ′′ \ U ′′, the morphism ϑ′′ is
a double cover branched over the fibers π−1

X ([λ′′1 : 1]) and π−1
X ([λ′′2 : 1]), the morphism ω′′

is a double cover branched over the points [λ′′1 : 1] and [λ′′2 : 1], the morphism γ is the
blow up of both singular points of the surface S ′′, and δ is the contraction of the proper
transforms of the fibers π−1

S′′ ([λ′′1 : 1]) and π−1
S′′ ([λ′′2 : 1]) to two pairs of complex conjugate

non-real points. Then Ŝ ′′ is a smooth projective surface, πŜ′′ is a conic bundle that has
4r − 4 > 0 singular fibers, so that K2

Ŝ′′ = 12− 4r 6 8.

Let τ ′′ be the Galois involution of the double cover ϑ′′. Set G′ = 〈τ ′′〉. Then

rk PicG
′′
(Ŝ ′′) = 2. We have the following possibilities:

• If λ′′1 = ε1, λ′′2 = ε2, then Ŝ ′′(R) ≈ S1 × S1.

• If λ′′1 = ε1, λ′′2 = ε3, then Ŝ ′′(R) ≈ S2.

So, the surface Ŝ ′′ is R-rational. Hence, the involution τ ′′ induces a birational involution
ι′′ ∈ Bir(P2

R). The τ ′′-fixed locus consists of two pairs of complex conjugate non-real
points contained in the fibers π−1

Ŝ′′ ([λ
′′
1 : 1]) and π−1

Ŝ′′ ([λ
′′
2 : 1]), respectively. This shows that

F (ι′′) = F (τ ′′) = ∅.
If r > 2, the involution τ ′′ and the corresponding birational involution in Bir(P2

R) will
be both called 2-twisted Trepalin involution with 4r− 4 singular fibers. The class of such
birational involutions in Bir(P2

R) will be denoted by T′′4r−4.

3.D. Classification of Trepalin involutions. Let πS : S → P1
R be an R-rational and

G-minimal conic bundle, i.e. Pic(S)G ' Z2, where G is generated by an involution τ
acting non-trivially on the base P1

R (so in particular F (τ) = ∅, as the fixed locus of τ
is contained in the fibers of πS). Let ι be the corresponding birational involution of P2

R.
Assume that K2

S 6 4. The main result of this section is the following

Theorem 3.8. ι is conjugate to a t-twisted Trepalin’s involution with t ∈ {0, 1, 2}.

In the remaining part of this section, we give a proof of this theorem.

Since τ acts non-trivially on P1
R, it fixes two points on it, say p1 and p2, which are

either both real or complex conjugate. Denote the fibers over p1 and p2 by F1 and F2,
respectively. Note that the fibers F1 and F2 are necessarily smooth, see e.g. [31, Lemma
4.6]. Consider the diagram

S

πS
��

ϑ // V = S/τ

πV
��

P1
R

ω // P1
R

where ϑ is a quotient map S → V = S/τ . Since K2
S 6 4, the conic bundle πV has at least

two real singular fibers contained in a smooth locus of V .
Moreover, we have Pic(V ) ' Z2, so the irreducible components of these singular fibers

are exchanged by the Galois group Gal(C/R). In particular, πV has no real sections.
However it has two complex sections C1 and C2 such that C1 +C2 is defined over R. Let
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Z1 and Z2 denote their preimages on S under the map ϑ. Then Z1 and Z2 are the sections
of πS such that Z1 +Z2 is defined over R. Changing the coordinates on P1

R, if needed, we
may assume that π−1

V ([1 : 0]) is a smooth conic with no real points. Furthermore, we may
assume that ω(p1) = [λ1 : 1] and ω(p2) = [λ2 : 1], where λi are (a priori) either both real
or complex conjugate, and λ1 < λ2 in the first case. In fact, we have the following

Lemma 3.9. λ1 and λ2 are real.

Proof. Suppose that λ1 and λ2 are compex conjugate. If V is singular, then τ fixes two
pairs of complex conjugate points in F1∪F2. So, blowing up one pair and contracting the
proper transforms of the fibers F1, F2, we obtain a τ -equivariant commutative diagram

S

πS
��

// S ′

πS′
��

P1
R P1

R

such that τ fixes two fibers of πS′ over [λ1 : 1], [λ2 : 1] pointwisely. Hence, replacing S
with S ′, we may assume that V is smooth.

Note that K2
V 6 6 and by Proposition 2.2 the real locus V (R) is a disjoint union of

m > 1 spheres. Therefore, if λ1 and λ2 are complex conjugate, then S(R) is either empty
or is an unramified covering of V (R), so it is consists of at least 2 spheres. In both cases,
S is not R-rational by Theorem 2.1. �

Lemma 3.10. We have

πV (V (R)) ∪ ω(P1
R(R)) 6= P1

R(R).

In particular, we can make a further change of coordinates on P1
R so that the point at

infinity [1 : 0] is not contained in πV (V (R)) ∪ ω(P1
R(R)).

Proof. Let us view P1
R(R) as a circle and πV (V (R)) as a union of closed segments [ε2i−1, ε2i],

i = 1, . . . , r, on a circle, placed in a clockwise direction. Recall that [1 : 0] is not contained
in this union by our initial assumption, because π−1

V ([1 : 0]) is a smooth conic with no
real points. Note that πV ◦ ϑ(S(R)) is a closed interval in ω(P1

R(R)) = [λ1, λ2].
Furthermore, if V is smooth then

(3.11) πV ◦ ϑ(S(R)) = ω ◦ πS(S(R)) = πV (V (R)) ∩ ω(P1
R(R)).

So, [λ1, λ2] and πV (V (R)) cannot cover the whole circle. Otherwise, the endpoints of
[λ1, λ2] belong to the interior of some [ε2i−1, ε2i]. However, in that case S(R) would be
disconnected or empty.

Similarly, if V is singular then πV (V (R)) ∩ ω(P1
R(R)) is a union of the closed interval

πV ◦ ϑ(S(R)) and at most 2 points, the endpoints of [λ1, λ2]. Thus the union of [λ1, λ2]
and πV (V (R)) is the whole circle P1

R(R) only if r = 1 and the intervals [ε1, ε2], [λ1, λ2]
share one common endpoint. However, in this case K2

S = 6, which is excluded by our
assumption. �
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Note that the sections Z1 and Z2 of X are both G-invariant and exchanged by the Galois
group Gal(C/R). Arguing as in [5, Lemma-Definition 13, Lemma 15] , we may construct a
fiberwiseG-birational transformation S 99K S that fits the following commutative diagram

S

πS
��

χ // S

πS
��

P1
R P1

R

such that S is a smooth surface with Pic(S)G ' Z2, πS is a G-conic bundle, and χ(Z1)
and χ(Z2) are two disjoint sections of this conic bundle. Thus, replacing S with S, we
may assume additionally that Z1 and Z2 are disjoint.

Note that the set {Zi ∩ Fj : i, j = 1, 2} consists of four G-fixed points. Without loss of
generality, we may assume that the fixed locus of G is one of the following:

(0) The fibers F1 and F2 are fixed pointwise by G.
(1) The fiber F1 is pointwise fixed by G, and Z1 ∩ F2, Z2 ∩ F2 are the only G-fixed

points on F2.
(2) The points {Zi ∩ Fj : i, j = 1, 2} are the only points fixed by G.

We will show that these 3 cases correspond to 0-twisted, 1-twisted and 2-twisted
Trepalin involutions, respectively.

Lemma 3.12. Assume that F1 and F2 are fixed pointwise by G. Then τ is conjugate to
a 0-twisted Trepalin involution.

Proof. First note that V is a smooth surface, equipped with the structure of R-minimal
conic bundle with 2r singular fibers, so K2

V = 8 − 2r and K2
S = 8 − 4r. Denote by

F the general fiber of πV . Then one has C1 + C2 ∼ −KV + rF , C2
1 = C2

2 = −r and
−KV · Ci = 2− r.

One can show that the linear system | −KV + (r − 2)F | is base-point free and gives a
birational morphism ρ : V → Z contracting C1 and C2 such that Z is a hypersurface in
PR(1, 1, r, r) given by the equation

x2 + y2 + f2r(t, s) = 0,

where t, s, x, y are coordinates on PR(1, 1, r, r) of weights 1, 1, r, r, respectively, f2r is a
real polynomial of degree 2r, and πV ◦ρ−1 : Z 99K P1

R is given by [t : s : x : y] 7→ [t : s]. So,
we identify [t : s] with coordinates on the base of πV . Since V is smooth and R-minimal
over P1

R, the polynomial f2r(t, s) has 2r distinct real roots in P1
R. By our assumption,

f2r([1 : 0]) > 0.
Let [εi : 1], εi < εi+1, i = 1, . . . , 2r, denote the roots of f2r(t, s), i.e.

f2r(t, s) = (t− ε1s) · . . . · (t− ε2rs).

Set Y = V \
(
π−1
V ([1 : 0])∪C1∪C2

)
. Then Y is given by the equation (3.1) in A3

R. We now
regard t as the affine coordinate on A1

R and denote by πY : Y → A1
R the corresponding
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conic bundle. Let U = ϑ−1(Y ) ⊂ S and let θ : U → Y be the induced double cover. Then
U can be given by the equation

(3.13)

{
x2 + y2 + (t− ε1)(t− ε2) · · · (t− ε2r) = 0,

w2 ± (t− λ1)(t− λ2) = 0,

in A4
R and θ is given by (x, y, t, w) 7→ (x, y, t). Observe that Y (R) = V (R), S(R) = U(R),

πY (Y (R)) =
r⊔
i=1

[ε2i−1, ε2i].

By Lemma 3.9, one has λi ∈ R. By Lemma 3.10, one has [1 : 0] /∈ ω(P1
R(R)), so U is in

fact given by (3.2). By (3.11), one has

πY ◦ ϑ(U(R)) = [λ1, λ2] ∩

(
r⊔
i=1

[ε2i−1, ε2i]

)
.

Since U(R) is connected, [λ1, λ2] can intersect only one of the [ε2i−1, ε2i]. Making a further
change of coordinates on P1

R, if needed, we may assume that this is [ε1, ε2]. Moreover,
λ1, λ2 /∈ {ε1, ε2}, as the fibers F1 and F2 are smooth. If [ε1, ε2] is strictly contained in
[λ1, λ2] then S(R) = U(R) ≈ S2 t S2, a contradiction. Hence up to an affine change of
coordinate t, we may assume that λ2 < ε2. Observe that we obtained the commutative di-
agram (3.3) with X = V . This shows that τ is a 0-twisted Trepalin involution constructed
in Section 3.A.

�

Lemma 3.14. Assume that F1 is pointwise fixed by G, and Z1 ∩F2, Z2 ∩F2 are the only
G-fixed points on F2. Then τ is conjugate to a 1-twisted Trepalin involution.

Proof. Recall that λ1, λ2 ∈ R. The surface V has two singular points of type A1 which
are exchanged by the Galois involution. We have the following commutative diagram

S̃

ϑ̃��
β

zz

α

$$

V̂

�� ��
S

πS
��

ϑ // V

πV
��

V ′

πV ′
��

S ′

πS′
��

ϑ′oo

P1
R

ω // P1
R P1

R P1
R

ω′
oo

where β is a blow-up of two points Z1 ∩ F1 and Z1 ∩ F2, α is a contraction of the proper

transform of F2 to a singular point of S ′ of type A1, V̂ → V is a minimal resolution of the

singularities of V (i.e. the blow up of ϑ(Z1∩F2) and ϑ(Z2∩F2)), V̂ → V ′ is a contraction
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of proper transform of ϑ(F2) to a smooth point of V ′, ϑ̃ is a double cover ramified in
proper transform of F1 and β-exceptional curves, and ϑ′ is a double cover ramified in the
smooth fiber π−1

V ′ ([λ1 : 1]) and the singular fiber π−1
V ′ ([λ2 : 1]); finally, ω′ is a double cover

branched at [λ1 : 1] and [λ2 : 1]. Observe that V ′ is a smooth real surface, Pic(V ′) ' Z2

and πV ′ is a conic bundle. Recall that the fiber at infinity π−1
V ′ ([1 : 0]) ' π−1

V ([1 : 0]) is a
smooth real conic with no real points.

Denote by C ′1 and C ′2 the proper transforms of the (complex) curves C1, C2 on V ′. Then
C ′1 and C ′2 are two disjoint sections of the conic bundle πV ′ such that C ′1 + C ′2 is defined
over R. Let Y = V ′ \ (C ′1 ∪ C ′2 ∪ π−1

V ′ ([1 : 0])), and let πY : Y → A1
R be the morphism

induced by πV ′ . Arguing as in the proof of Lemma 3.12, we see that Y can be given in
A3

R by the equation (3.4) for some real numbers ε1 < ε2 < · · · < ε2r, and πY : Y → A1
R is

the map given by (x, y, t) 7→ t. Note that πV ′ has 2r singular fibers over the points [εi : 1],
and πS has 2(2r − 1) = 4r − 2 singular fibers. As we assume K2

S 6 4, we get r > 2.
By construction, λ2 ∈ {ε1, . . . , ε2r}. Set U ′ = ϑ′−1(Y ) ⊂ S ′ and let θ′ : U ′ → Y be the

induced double cover. Then θ′ is branched over the smooth fiber π−1
Y (λ1) and the singular

fiber π−1
Y (λ2). Since [1 : 0] /∈ ω′(P1

R(R)) = ω(P1
R(R)) by Lemma 3.10, U ′ may be given by

the equation (3.4) with λ′1 = λ1 and λ′2 = λ2. Now, arguing as in the end of the proof of
Lemma 3.12, we can change the coordinates on P1

R so that λ2 ∈ {ε2, ε3}. Since S(R) is
non-empty and connected, we see that either ε1 6= λ1 < ε2 and λ2 = ε2, or ε1 < λ1 < ε2

and λ2 = ε3. More precisely, we have the following possibilities:

• λ2 = ε2, ε1 < λ1 < ε2, and F1(R) 6= ∅, F2(R) 6= ∅.
• λ2 = ε2, λ1 < ε1 and F1(R) = ∅, F2(R) 6= ∅.
• λ2 = ε3, ε1 < λ1 < ε2 and F1(R) 6= ∅, F2(R) = ∅.

We obtained the commutative diagram (3.5) with X = V ′, Ŝ ′ = S and S̃ ′ = S̃. This
shows that τ is a 1-twisted Trepalin involution constructed in Section 3.B. �

Lemma 3.15. Suppose that points {Zi ∩ Fj : i, j = 1, 2} are the only points fixed by G.
Then τ is conjugate to a 2-twisted Trepalin involution.

Proof. The proof is analogous to the proof of Lemma 3.14, only we now blow up the four
A1 singularities of V . The same way, we obtain a G-birational map from S to a smooth
surface U ′′ ⊂ A4

R given by equation (3.6) with λ′′1 = λ1 and λ′′2 = λ2. Arguing as in the
end of the proof of Lemma 3.14, we can change the coordinates on P1

R so that λ1 = ε1

and λ2 ∈ {ε2, ε3}. If (λ1, λ2) = (ε1, ε2) then F1(R) 6= ∅, F2(R) 6= ∅. On the other
hand, if (λ1, λ2) = (ε1, ε3) then F1(R) 6= ∅, F2(R) = ∅. Observe that we obtained the

commutative diagram (3.7) with X = V ′′, Ŝ ′′ = S and S̃ ′′ = S̃. This shows that τ is a
2-twisted Trepalin involution constructed in Section 3.C. �

4. Bertini involutions

Let S be a real del Pezzo surface of degree 1 that is rational over R. In our treatment
we follow [17, §6.6]. Recall that S is a hypersurface in PR(1, 1, 2, 3) of degree 6, and
the natural projection to S → PR(1, 1, 2) gives a double cover π : S → Q, where Q is the
geometrically irreducible quadric cone in P3

R. The Galois involution of this double cover
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and the corresponding birational involution in Bir(P2
R) will be both called the Bertini

involution. The class of such birational involutions in Bir(P2
R) will be denoted by B4.

The real locus S(R) is not empty and smooth, thus the regular part of Q(R) is not
empty and we can choose suitable affine coordinates (x, y, z) on A3 to write an equation
of Q ∩ A3

R in the form x2 + y2 = 1, so that Q(R) is a cylinder with a singular point at
infinity. The surface S is the double cover of the quadric cone branched at the vertex of
the cone and at a smooth curve C6 of genus 4 which is the intersection of a cubic surface
with the cone. The equations of S ∩ A4 are of the form

x2 + y2 − 1 = u2 ± f3(x, y, z) = 0

where f3 is a cubic inhomogeneous polynomial.
From Theorem 2.1, the real locus S(R) is not empty and connected. Using [32, §4] or

[17, §6.6], we get that C6(R) is the union of one simple closed loop homotopic to a plane
section of the cone called a big circle, which we denote by Ω0, and t ∈ {0, . . . , 4} non-
nested ovals (simple closed loops which are null homotopic) on the same side of the big
circle.

We may assume that f3(x, y, z) is positive inside the ovals in Q(R), if there are any. Let
S+ be the double cover of Q such that the equation of S+∩A4 is of the form x2 +y2−1 =
u2 + f3(x, y, z) = 0. Similarly, let S− be the double cover of Q such that the equation of
S− ∩A4 is of the form x2 + y2 − 1 = u2 − f3(x, y, z) = 0. If there are no ovals, the case is
symmetrical and we can denote by S+ one of the double cover and by S− the other one.
The surface S is either S+ or S−. The topology of the loci S±(R) is described in Table 1.

C6(R) Ω0 Ω0 t 1 oval Ω0 t 2 ovals Ω0 t 3 ovals Ω0 t 4 ovals

S+(R) RP2 RP2 t S2 RP2 t2
i=1 S2 RP2 t3

i=1 S2 RP2 t4
i=1 S2

S−(R) RP2 #3RP2 #5RP2 #7RP2 #9RP2

Table 1. Real rational del Pezzo surfaces of degree 1. The real locus C6(R)
is formed by one big circle Ω0 and t ∈ {0, . . . , 4} ovals.

Here, we denote by #kRP2 the connected sum of k copies of RP2, for example #2RP2

is the Klein bottle. Note that there are four other possible real loci for S±(R), which all
are non connected, see Table 1.

Lemma 4.1. If C6(R) is non-connected, then S is uniquely determined by C6.

Proof. If C6(R) has at least one oval, then it follows from Table 1 that only one of the
covers S+ or S− is rational over R, so S is uniquely determined by the real curve C6. �

If the real locus C6(R) is connected, then it is formed by one big circle in Q. In this
case, both surfaces S+ and S− are rational over R; their real loci are diffeomorphic to
RP2. These two real surfaces may be isomorphic in some cases. Let us give two examples.
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Example 4.2. Let S+ and S− be smooth hypersurfaces in PR(1, 1, 2, 3) that are given by

w2 = ±
(
z3 + xy5 + yx5

)
.

Then topologically both S+(R) and S−(R) are RP2. Moreover, one has S+
∼= S−, and

this isomorphism is given by [x : y : z : w] 7→ [−x : y : −z : w].

Example 4.3. Let S+ and S− be smooth hypersurfaces in PR(1, 1, 2, 3) that are given by

w2 = ±
(
z3 + f4(x, y)z + f6(x, y)

)
,

where f4 and f6 are homogeneous polynomials of degree 4 and 6, respectively. Suppose
that f4(x, y) > 0 for every (x, y) ∈ R2 \ (0, 0). Then topologically both S+(R) and S−(R)
are RP2. On the other hand, for sufficiently general choice of the polynomials f4 and f6,
the surfaces S+ and S− are not isomorphic over R.

Now, let τ be an involution in Aut(S), let G = 〈τ〉, and let C be the union of all curves
in S that are pointwise fixed by τ . Then the curve C is smooth by Lemma 2.5 and either
F (τ) = ∅ or F (τ) is the unique irrational component of the curve C by Lemma 2.7.
Moreover, if τ is the Bertini involution then F (τ) = C = C6 and Pic(S)G ∼= Z. Vice
versa, we have the following result:

Proposition 4.4 ([33, Proposition 9.2]). If Pic(S)G ' Z, then τ is the Bertini involution.

Corollary 4.5. For a birational map ρ : S 99K P2
R, let ι = ρ ◦ τ ◦ ρ−1 ∈ Bir(P2

R). If
Pic(S)G ' Z, then S is uniquely determined by the conjugacy class of the birational
involution ι.

Proof. By Theorem 2.8, if Pic(S)G ' Z, then S is G-birationally super-rigid. Applying
Proposition 4.4 to S and τ yields the result. �

5. Geiser and Kowalevskaya involutions

Let S be a real smooth projective del Pezzo surface of degree K2
S = 2 that is rational

over R, and let π : S → P2
R be the anticanonical double cover. Then the Galois involution

of this double cover and the corresponding birational involution in Bir(P2
R) will be both

called the Geiser involution. The class of such birational involutions in Bir(P2
R) will be

denoted by G3.
Let C4 be the quartic curve in P2

R that is the ramification curve of the double cover π.
Then C4 is a real curve of genus 3 whose real locus C4(R) is a collection of ovals in P2

R(R).
A priori, we may have C4(R) = ∅, but we will see later that this is impossible since S is
rational (over R).

We may choose projective coordinates on P2
R such that all ovals of C4 are contained in

the chart z 6= 0. Indeed, it follows from [35] or [17, Exercise 6.5.] that P2
R contains a real

bi-tangent of the quartic C4. See also [26] for a more general result about multitangents.
Thus, perturbing this bi-tangent a little bit, we obtain a real line in P2

R that does not
intersect ovals of C4. Now, we can choose projective coordinates such that this line is
given by z = 0, so that all ovals of C4 are contained in the chart z 6= 0, which we identify
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with R2 with affine coordinates (x, y) = [x : y : 1]. Thus, in the following (except for the
proof of Proposition 5.4) we will assume that all ovals of C4 are contained in the chart
z 6= 0, i.e. the intersection {z = 0} ∩ C4(R) is empty.

Choose the quartic polynomial f4(x, y, z) such that C4 is given by f4(x, y, z) = 0 and
f4(x, y, 1) is negative on the unbounded part of the plane R2. Let S+ and S− be two real
quartic surfaces in PR(1, 1, 1, 2) that are given by

±w2 = f4(x, y, z),

respectively. Here, we also consider x, y and z as coordinates on PR(1, 1, 1, 2) of weight 1,
and w is a coordinate of weight 2. Note that PR(1, 1, 1, 2)(R) is disconnected, and both
surfaces S+ and S− are isomorphic over C. Furthermore, our surface S is either S+ or
S−. The topology of S+(R) and S−(R) is described in Table 2, see [17, Proposition 6.2].

C4(R) ∅ 1 oval 2 non-nested ovals 2 nested ovals 3 ovals 4 ovals

S+(R) ∅ S2 S2 t S2 S1 × S1 t3
i=1S2 t4

i=1S2

S−(R) RP2 t RP2 #2RP2 #4RP2 S2 t#2RP2 #6RP2 #8RP2

Table 2. Real rational del Pezzo surfaces of degree 2.

Since S is assumed to be R-rational, the real locus S(R) is not empty and connected.
In particular, we see from Table 2 that the real locus C4(R) is not empty.

Remark 5.1. Table 2 implies the following: if C4(R) is non-connected, then S is uniquely
determined by C4, and if C4(R) is connected, then S is uniquely determined by C4 and
the orientability of the real locus S(R).

Now let τ be an involution in Aut(S), let G = 〈τ〉, and let C be the union of all curves
in S that are pointwise fixed by τ . By Lemma 2.5 and Lemma 2.7, the curve C is smooth
(and maybe empty) and either F (τ) = ∅, or F (τ) is the unique irrational component of
the curve C. Moreover, if our involution τ is the Geiser involution, then Pic(S)G ∼= Z and
F (τ) = C = C4. However, contrary to the case of complex del Pezzo surface of degree
2, if Pic(S)G ' Z, we cannot conclude that τ is the Geiser involution. This phenomenon
was first observed in [33, Example 8.2]. The reason for this is the following remarkable
(not well known) fact that was essentially discovered by Sophie Kowalevskaya in [18].

Proposition 5.2 ([8, §9]). Let B be a smooth quartic curve in P2. Then four bitangents
of the curve B meet at one point O if and only if there exists a biregular involution
κ ∈ Aut(P2) which leaves B invariant and has the point O /∈ B as an isolated fixed point.

Remark 5.3. Sophie Kowalevskayas’s original motivation for the study of plane quartics
was a problem of reduction of abelian integrals to elliptic integrals. Namely, in [18]
she proves the following remarkable statement. Let y = f(x) be an algebraic function
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which satisfies a quartic equation F (x, y) = 0. Let B denote the quartic curve given by
F (x, y) = 0. Then there exists an abelian integral of the first kind∫

Φ(x, f(x))dx

which can be reduced to an elliptic integral using a change of variables of degree 2 if and
only if B has four bitangents meeting at one point.

Using Proposition 5.2 and its proof, we get the following refinement of [33, Proposi-
tion 8.1].

Proposition 5.4. Suppose Pic(S)G ' Z, the involution τ is not the involution of the dou-
ble cover π : S → P2

R, i.e. τ is not the Geiser involution, and F (τ) 6= ∅. Then one can
choose coordinates on P2

R and PR(1, 1, 1, 2) such that τ is given by [x : y : z : w] 7→ [x :
−y : z : w], one has S = S+ and f4 = −(y2 + ax2 + bxz + cz2)2 ± xz(x − z)(x − sz) for
some real numbers a, b, c, s such that a > 0, s > 1, the curve C4 is smooth, and either
C4(R) consists of one oval, or the locus C4(R) consists of two nested ovals in P2

R(R). In
particular, the surface S is given in PR(1, 1, 1, 2) by

w2 = −(y2 + ax2 + bxz + cz2)2 ± xz(x− z)(x− sz).

Moreover, if the real locus C4(R) consists of two nested ovals, then S(R) ≈ S1 × S1.
Similarly, if the locus C4(R) consists of one oval, then S(R) ≈ S2. One has F (τ) = C,
where C is the smooth genus 1 curve that is cut out on S by y = 0.

Proof. Since τ is not a Geiser involution and the double cover π is G-equivariant, the invo-
lution τ induces a non-trivial involution κ ∈ Aut(P2

R) which leaves the curve C4 invariant.
Hence, choosing appropriate coordinates on P2

R, we may assume that κ acts on P2
R by

[x : y : z] 7→ [x : −y : z]. Note that we abuse our previous choice of coordinates on P2
R

that guarantees that the equation f4(x, y, 0) = 0 has no real solutions with (x, y) 6= (0, 0).
However, we will see later that this condition can also be preserved under the new choice
of coordinates on P2

R.
Since C4 is G-invariant, we may assume that f4(x, y, z) = ±(y2 +g2(x, z))2 +g4(x, z) for

some real homogeneous polynomials g2(x, z) and g4(x, z) of degree 2 and 4, respectively.
Since F (τ) 6= ∅, we conclude that τ acts on S as follows: [x : y : z : w] 7→ [x : −y : z : w].
Then F (τ) = C, where C is the smooth genus 1 curve cut out on S by y = 0.

Suppose that C4(R) contains two non-nested ovals. By [17, Exercise 6.5], C4 has at
least 8 real bitangents. Then there exists a real line ` ⊂ P2

R that is tangent to both of
them, so that ` is a real bi-tangent of the curve C4 that is contained in the locus where
f4(x, y, z) is non-positive. Using Table 2, we see that S = S−, since S is rational by
assumption. Hence, we have π∗(`) = `1 + `2, where `1 and `2 are two distinct (−1)-curves
in S that are both defined over R. Moreover, we also have τ(`1) 6= `2, because τ acts
on S as [x : y : z : w] 7→ [x : −y : z : w]. Thus, either τ(`1) = `1 or τ(`1) · `1 = 1
or τ(`1) ∩ `1 = ∅, which implies that (`1 + τ(`1))2 6 0. This contradicts the condition
Pic(S)G ' Z, because the divisor `1 + τ(`1) is G-invariant.
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Hence, using Table 2, we conclude that either C4(R) consists of one oval, or C4(R)
consists of two nested ovals.

We claim that g4(x, z) has four real roots [x : z] ∈ P1
R. Indeed, suppose that g4(x, z) has

a root [1 : ξ] ∈ P1
R such that ξ 6∈ R. Thus, if S is given by w2 = (y2 + g2(x, y))2 + g4(x, z)

or by −w2 = −(y2 + g2(x, y))2 + g4(x, z), then the curves{
z = ξx,

w =
(
y2 + g2(x, z)

)
and {

z = ξ̄x,

w =
(
y2 + g2(x, z)

)
are (−1)-curves in S that intersect transversally by 1 point, namely [0 : 1 : 0 : 1]. Since
the sum of these two curves is a G-invariant divisor on S that is defined over R, we
immediately obtain a contradiction with the condition Pic(S)G ' Z, because this divisor
has self-intersection zero. Similarly, if S is given by w2 = −(y2 + g2(x, y))2 + g4(x, z) or
by −w2 = (y2 + g2(x, y))2 + g4(x, z), then the curves{

z = ξx,

w = i
(
y2 + g2(x, z)

)
and {

z = ξ̄x,

w = −i
(
y2 + g2(x, z)

)
are disjoint (−1)-curves in S. This also contradicts Pic(S)G ' Z, because the sum of
these two curves is a G-invariant divisor on S that is defined over R, and its square is −2.

Thus, we see that the polynomial g4(x, z) has four real roots in P1
R. Keeping in mind that

C4 is smooth, we see that these roots are distinct. Therefore, changing the coordinates x
and z, we may assume that g4 = ±xz(x− z)(x− sz) for some real number s > 1. Then

f4(x, y, z) = ±
(
y2 + g2(x, z)

)2 ± xz(x− z)(x− sz),

so that the surface S is given in PR(1, 1, 1, 2) by

(5.5) ± w2 = ±
(
y2 + g2(x, z)

)2 ± xz(x− z)(x− sz),

where a priori all ± in these two equations are independent of each other.
We claim that the first two ± in the equation (5.5) are actually not the same, i.e. either

we have S = S+ and the surface S is given by w2 = −(y2 + g2(x, z))2±xz(x− z)(x− sz),
or S = S− and S is given by −w2 = (y2 + g2(x, z))2 ± xz(x− z)(x− sz). Indeed, if this
is not the case, then the curve {x = w − (y2 + g2(x, z)) = 0} ⊂ PR(1, 1, 1, 2) is a real
G-invariant (−1)-curve in S, which contradicts to Pic(S)G ∼= Z. Thus, we see that

• either S = S+ and f4 = −(y2 + g2(x, z))2 ± xz(x− z)(x− sz),
• or S = S− and f4 = (y2 + g2(x, z))2 ± xz(x− z)(x− sz).
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Now, we claim that at least two numbers among g2(1, 0), g2(0, 1), g2(1, 1), g2(s, 1) are
positive. Indeed, if all these four numbers are non-positive, then the locus C4(R) contains
at least two non-nested ovals, which is impossible, since we already proved that C4(R) is
either a single oval or a two nested ovals. On the other hand, the group Aut(P1

R) contains
a subgroup isomorphic to (Z/2)2 that transitively permutes the points [1 : 0], [0 : 1], [1 : 1]
and [s : 1]. Hence, we may change the coordinates x and z further such that g2(1, 0) > 0.
This simply means that g2(x, z) = ax2 + bxz+ cz2 for some real numbers such that a > 0.

In particular, we see that the line {z = 0} does not contain points in C4(R), i.e. all
ovals of C4 are contained in the chart z 6= 0 as we assumed earlier in this section. We know
that at least one number among g2(0, 1), g2(1, 1) or g2(s, 1) is positive, because C4(R) is
one oval or two nested ovals. Thus, at least one of the lines {x = 0}, {x = z}, {x = sz}
does not contain points in C4(R), so that the real points of this line are contained in
the unbounded part of the complement R2 \ C4(R), where R2 is the subset in P2

R given
by z 6= 0. We can choose f4(x, y, z) to be negative on the unbounded part of R2 \ C4(R),
as explained in the beginning of the section, so f4(x, y, z) is negative at every real point
of this line. In particular, one of the numbers f4(0, 0, 1), f4(1, 0, 1), f4(s, 0, 1) is < 0, so

f4 = −
(
y2 + ax2 + bxz+ cz2

)2± xz(x− z)(x− sz). It follows that S = S+ and S is given
by w2 = −(y2 + ax2 + bxz + cz2)2 ± xz(x− z)(x− sz). �

Remark 5.6. Suppose that τ is given by [w : x : y : z] 7→ [w : x : −y : z], and S is
a smooth surface in PR(1, 1, 1, 2) that is given by

w2 = −(y2 + ax2 + bxz + cz2)2 ± xz(x− z)(x− sz)

for some real a, b, c, s such that s 6= 0, 1. Then Pic(S)G ∼= Z. Indeed, let Y = S/G. Then
Y is a hypersurface in PR(1, 1, 2, 2) that is given by

w2 = −(u+ ax2 + bxz + cz2)2 ± xz(x− z)(x− sz).

where we consider x and z as coordinates on PR(1, 1, 2, 2) of weight 1, and u and w are
coordinates of weight 2. Then Y is a so-called Iskovskikh surface. Namely, the surface
Y is a del Pezzo surface of degree 4 that is singular at the points [0 : 0 : 1 : i] and
[0 : 0 : 1 : −i], its singularities at these points are ordinary double points, and there exists
the following commutative diagram:

Ỹ

η

��

ν // Y

χ

��
P1
R P1

R

where ν is the blow up of the points [0 : 0 : 1 : i] and [0 : 0 : 1 : −i], and χ is the rational
map given by [x : z : u : w]→ [x : z]. Then η is a conic bundle, which is defined over R.
Observe that η has exactly four geometrically singular fibers — these are the preimages
of the curves in Y that are cut out on Y by the equations x = 0, z = 0, x = z and x = sz.

These fibers are conics in P2
R that are irreducible over R. This implies that Pic(Ỹ ) ∼= Z2,

so that Pic(Y ) ∼= Z. Therefore, we conclude that Pic(S)G ∼= Z.
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If S is a smooth del Pezzo surface in PR(1, 1, 1, 2) that is given by

w2 = −(y2 + ax2 + bxz + cz2)2 ± xz(x− z)(x− sz),

for some real numbers a, b, c, s such that a > 0, s > 1, the curve C4 is smooth, and either
C4(R) consists of one oval, or the locus C4(R) consists of two nested ovals in P2

R(R), then
the involution τ ∈ Aut(S) given by [x : y : z : w] 7→ [x : −y : z : w] and the corresponding
birational involution in Bir(P2

R) will be both called a Kowalevskaya involution. The class
of such involutions in Bir(P2

R) will be denoted by K1.

Example 5.7. If S = S+ and f4 = −(y2 + x2 + z2)2 − xz(x − z)(x − 2z), then C4(R)
consists of a single oval, the surface S is smooth and rational, and S(R) ≈ S2, so that
the involution defined by [x : y : z : w] 7→ [x : −y : z : w] is a spherical Kowalevskaya
involution. Similarly, if S = S+ and f4 = −(y2 + 3(3x− z)(3x−2z))2−xz(x− z)(x−2z),
then C4(R) consists of a two nested ovals, the surface S is smooth and rational, and
S(R) ≈ S1 × S1, so that the involution [x : y : z : w] 7→ [x : −y : z : w] is a toroidal
Kowalevskaya involution.

Let us summarize the results of this section

Proposition 5.8. If Pic(S)G ' Z, then τ is the Geiser involution or a Kowalevskaya
involution.

Proof. This follows from Proposition 5.4 and the fact that F (τ) 6= ∅ by [33, §8.1]. �

Kowalevskaya involutions and Geiser involutions are never conjugate because one fixes
an elliptic curve and the other does not. If Pic(S)G ' Z, then the surface S is G-
birationally rigid by Theorem 2.8. Hence, the surface S is uniquely determined by the
conjugacy class of the birational involution in Bir(P2

R) that is induced by τ , and two such
involutions are conjugate if and only if the corresponding surfaces are G-isomorphic.

6. De Jonquières involutions

This and the next sections are both devoted to the study of involutions of real conic
bundles. We have treated involutions on conic bundles inducing an involution on P1

R in
Section 3.D, so now we are interested in involutions inducing the identity on the base.
Following the classical pattern [9], we distinguish two cases: G-exceptional and non-G-
exceptional conic bundles. The corresponding birational involutions in Bir(P2

R) will be
called de Jonquières involutions and (0-twisted, 1-twisted, 2-twisted) Iskovskikh involu-
tions, respectively. In this section, all surfaces are assumed to be R-rational.

6.A. Explicit models. Let S be a real smooth projective surface that is rational over R,
let τ be an involution in Aut(S), and let G = 〈τ〉. Suppose that there exists a G-minimal
conic bundle π : S → P1

R such that G acts trivially on the base of π.
The following definition is an adaptation of a well-known definition of an exceptional

conic bundle to our setting, cf. [9, § 5.2] and [5, Definition 13].

Definition 6.1. The G-conic bundle π : S → P1
R is said to be G-exceptional if π admits

two real sections Z1 and Z2 such that Z1 + Z2 is G-invariant.
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Let us show that every G-exceptional conic bundle is G-birational to a hypersurface
in the weighted projective space P(n, n, 1, 1) of degree 2n. In fact, we obtain even more
general result, namely explicit equations for any G-exceptional G-minimal conic bundle.

Lemma 6.2. Suppose that the conic bundle π admits two real sections Z1 and Z2 such
that Z1 + Z2 is G-invariant. Assume that τ acts trivially on the base of π. Then there
exists a G-equivariant birational map χ : S 99K X that fits into the following commutative
G-equivariant diagram:

(6.3) S

π
��

χ // X

η
��

ρ // Y

xx
P1
R P1

R

where X is a smooth real surface, η is a G-minimal conic bundle, and Y is a hypersurface
in the weighted projective space P(n, n, 1, 1) of degree 2n = 8−K2

S that is given by

xy = f(z, t)

for some real (homogeneous) polynomial f(z, t) of degree 2n that has no multiple roots.
The curves Z1 and Z2 are ρ ◦ χ-exceptional, G acts on Y as [x : y : z : t] 7→ [y : x : z : t],
the map Y 99K P1

R is given by [x : y : z : t] 7→ [z : t], the morphism ρ is the minimal
resolution, and x, y, z, t are coordinates on P(n, n, 1, 1) of weights n, n, 1, 1, respectively.

Proof. The proof is the same as the proof of [5, Lemma-Definition 13, Lemma 15]. Indeed,
if Z1 ∩ Z2 = ∅, we can let χ = IdS, since Z2

1 = Z2
2 = 1

2
(K2

S − 8) 6 0 [5], and the linear
system |Z1 +Z2 +nF | gives birational morphism from S = X to the required hypersurface
in P(n, n, 1, 1), where F is a fiber of the conic bundle π, and n = −Z2

1 . The proofs of
the remaining assertions are similar to what is done in [9, Section 5.2] and are left to the
reader.

If Z1 ∩ Z2 6= ∅, then singular fibers of the conic bundle π do not contain any point in
the intersection Z1 ∩ Z2. In this case, there exists a G-equivariant commutative diagram

W
α

~~

β

  
S

π
��

Ŝ

π̂
��

P1
R P1

R

such that α is the blow up of the set Z1 ∩ Z2, and β is the contraction of the proper

transforms of the fibers of π that contain points in Z1 ∩ Z2. We have Ẑ1 · Ẑ1 < Z1 · Z1,

where Ẑ1 and Ẑ2 are proper transforms on Ŝ of the curves Z1 and Z2, respectively.
Iterating the described construction, we obtain the required map S 99K X. �

Remark 6.4. Observe that all surfaces in the diagram (6.3) are rational over the field R,
and this does not impose any additional restriction on the polynomial f(z, t).
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We now give several equivalent characterizations of G-exceptional real conic bundles.

Proposition 6.5. Let π : S → P1
R be a real G-conic bundle. Assume that S is R-rational.

Then the following conditions are equivalent:

(1) S is G-exceptional;
(2) there exists G-commutative diagram (6.3);
(3) the relatively minimal model of the conic bundle π is a Hirzerbruch surface Fn;
(4) the conic bundle π : S → P1

R has a real section;
(5) π(S(R)) = P1

R(R).

Proof. Note that (1) and (2) are equivalent by Lemma 6.2. The equivalence of (3) and
(4) follows from Proposition 2.2. The implication (1)⇒(3) follows from the existence of
a real section of the conic bundle π. Conversely, if there exists some birational morphism
S → Fn over P1

R for some n > 0, then letting Z1 be the strict transform of the special
section (or any 0-section if n = 0), we get that Z1 + τ(Z1) is G-invariant and defined over
R. Thus we get that (1), (2), (3) and (4) are all equivalent. By Remark 2.3, also (3) and
(5) are equivalent. �

If the conic bundle π : S → P1
R is G-exceptional and K2

S = 8− 2n 6 4, the involution τ
and the corresponding birational involution in Bir(P2

R) will be both called de Jonquières
involution of genus g = n− 1 > 1, where 2n is the number of singular fibers of the conic
bundle π. The class of such birational involutions in Bir(P2

R) will be denoted by dJg. Note
that it follows from Lemma 6.2 that de Jonquières involutions in Bir(P2

R) are given by the
same formulas as classical de Jonquières involutions in Bir(P2

C).

6.B. Real hyperelliptic curves. Let us use assumptions and notations of Lemma 6.2.
The fixed locus of the biregular involution τ ∈ Aut(X) is the curve C ' ρ(C), where
ρ(C) is given by {

x = y,

x2 = f(z, t).

If n > 3, then ρ(C) is a real hyperelliptic curve of genus g = n − 1 with hyperelliptic
covering ν : C → P1

R given by [x : y : z : t] 7→ [z : t]. If n = 2, then ρ(C) is an elliptic
curve. Over C, the curve C is determined by the roots in P1

C of the polynomial f(z, t).
However, over R, there are two forms of this (complex) curve: the curve C = C+ and
the curve C− that is given in P(n, 1, 1) by x2 = −f(z, t). These two real curves are
isomorphic over C, but they are not always isomorphic over R. If C+

∼= C−, the curve C
is called a Gaussian curve in [11].

Lemma 6.6 (cf. [11, § 2]). Suppose that n > 3. Then C+
∼= C− if and only if there

exists β ∈ GL2(R) such that β∗(f) = −f .

Proof. The required assertion follows from [11, Theorem 2.3]. �

Example 6.7. Let f(z, t) = zt(z − t)(z − 2t)(z2 + t2). Then there is no non trivial
elements β ∈ GL2(R) such that β∗(f) = −f . Thus, by Lemma 6.6, we see that C+ is not
isomorphic to C− over the reals.
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For the surface Y given by xy = f(z, t), we set Y+ = Y , and we let Y− be xy = −f(z, t).
Let X+ = X and X− be their minimal resolutions, respectively. Then Lemma 6.6 gives:

Corollary 6.8. In the notation of Lemma 6.2, suppose that n > 3. Then one one has
X+ ' X− over R if and only if C+ ' C− over R.

6.C. G-birational classification. We are ready to prove the main result of this section.
Let S and S ′ be two real smooth R-rational projective surfaces, and let τ and τ ′ involutions
in Aut(S) and Aut(S ′), respectively. Set G = 〈τ〉 and G′ = 〈τ ′〉. Suppose, in addition,
there are G-minimal conic bundle π : S → P1

R and G′-minimal conic bundle π′ : S ′ → P1
R.

Theorem 6.9. Suppose that the fixed curve F (τ) is a smooth curve of genus g > 2,
the G-conic bundle π is a G-exceptional, and the G′-conic bundle π′ is G′-exceptional.
Then there is a birational map ρ : S 99K S ′ such that τ ′ = ρ ◦ τ ◦ ρ−1 if and only if
F (τ) ' F (τ ′).

Proof. Suppose that F (τ) ' F (τ ′). To complete the proof, it is enough to show that
there exists a birational map ρ : S 99K S ′ such that τ ′ = ρ ◦ τ ◦ ρ−1. By Lemma 6.2,
we may assume that S is given by xy = f(z, t) in P(n, n, 1, 1) for some homogeneous
polynomial f(z, t) of degree 2g + 2 that does not have multiple roots, and τ is given by
[x : y : z : t] 7→ [y : x : z : t]. Likewise, we may assume that S ′ is given by xy = f ′(z, t)
in P(n, n, 1, 1) for some polynomial f ′(z, t) of degree 2g + 2 that does not have multiple
roots, and τ ′ is given by [x : y : z : t] 7→ [y : x : z : t].

If F (τ) ' F (τ ′), then it follows from [11, Lemma 2.1] that there are real numbers a, b,
c, d such that ad−bc 6= 0 and f(az+bt, cz+dt) = ±f ′(z, t). If f(az+bt, cz+dt) = f ′(z, t),
we let ρ to be the map given by [x : y : z : t] 7→ [x : y : az + bt : cz + dt]. Otherwise, we
let ρ be the map given by [x : y : z : t] 7→ [x : −y : az + bt : cz + dt]. �

7. Iskovskikh involutions

Now, we present another three constructions of birational involutions of the real pro-
jective plane that fix hyperelliptic curves. Over C, all these involutions are conjugate
to de Jonquières involutions described in Section 6, which is not the case over R. The
involutions described in this section are given by the involutions of non-G-exceptional real
conic bundles (see Definition 6.1). Since Vasily Iskovskikh pioneered the study of conic
bundles over algebraically non-closed fields [12, 13, 14], we decided to call the constructed
birational involutions (0-twisted , 1-twisted, 2-twisted) Iskovskikh involutions.

First, we give an explicit birational model of a non-G-exceptional real conic bundle,
and present a tool that can be used to check whether two such G-conic bundles are
G-birational or not. This is done in Theorems 7.1 and 7.6, respectively.

7.A. Good birational model. Let π : S → P1
R be a smooth real G-minimal conic bun-

dle, where G = 〈τ〉 for an involution τ ∈ Aut(S) that acts by identity on P1
R. By

Proposition 6.5, this conic bundle is not G-exceptional if and only if π(S(R)) is a union
of intervals in P1

R(R). The main result of this section is the following theorem, which we
will prove in Section 7.D.
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Theorem 7.1. Suppose that theG-minimal conic bundle π : S → P1
R is notG-exceptional.

Then there exists G-equivariant commutative diagram

(7.2) S

π
��

χ // X

η
��

P1
R φ

// P1
R

where χ is a birational map, φ ∈ PGL2(R), X is a smooth surface, η is a G-minimal conic
bundle, the fiber η−1([1 : 0]) is smooth and does not have real points, the quasi-projective
surface Y = X \ η−1([1 : 0]) is a given in P2

R × A1
R by

(7.3) A(t)x2 +B(t)xy + C(t)y2 = H(t)z2

for some polynomials A,B,C,H ∈ R[t] such that (B2 − 4AC)H does not have multiple
roots and deg(B2 − 4AC) is even, the involution τ acts on the surface Y by

([x : y : z], t) 7→ ([x : y : −z], t),

and the restriction map η|Y : Y → P1
R \ [1 : 0] = A1

R is the map given by ([x : y : z], t) 7→ t,
where ([x : y : z], t) are coordinates on P2

R × A1
R. Moreover, the following holds:

(1) the polynomial H(t) has only real roots and its leading coefficient is negative,
(2) fibers of η over roots of the polynomial H(t) are singular irreducible conics.

Remark. Note that A 6= 0 and C 6= 0 in (7.3) since our conic bundle π : S → P1
R is

assumed to be non-G-exceptional.

Corollary 7.4. In the assumptions and notations of Theorem 7.1, either F (τ) = ∅, or the
G-fixed curve F (τ) is birational to the real algebraic curve given in A3

R by w2 = B2−4AC,
which is elliptic if deg(B2 − 4AC) = 4 and hyperelliptic if deg(B2 − 4AC) > 6.

Proof. TheG-fixed curve F (τ) is birational to the curve {Ax2+Bxy+Cy2 = 0} ⊂ P1
R×A1

R,

where ([x : y], t) are coordinates on P1
R × A1

R. Setting w = 2
(
Ax
y

+ B
2

)
, we get the

result. �

Corollary 7.5. In the assumptions and notations of Theorem 7.1, there exists a G-
equivariant commutative diagram

Y

πY
��

// Ŷ

π
Ŷ

��
A1

R A1
R

where Ŷ is a (possibly singular) surface in P1
R×A1

R given by Â(t)x2 + Ĉ(t)y2 = H(t)z2 for

some non-zero polynomials Â, Ĉ ∈ R[t] such that Ĉ = Â(4AC−B2), both πY and πŶ are

given by ([x : y : z], t) 7→ t, the G-action on Ŷ is given by ([x : y : z], t) 7→ ([x : y : −z], t),

and Y 99K Ŷ is a birational map that is biregular along singular fibers of the conic bundle
πY . Moreover, we have:
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• Â and Ĉ have no multiple roots,

• Â and H are co-prime,

• Ĉ and H are co-prime.

In particular, H has only real roots, the fibers of the conic bundle πŶ over roots of H are

singular irreducible conics, πŶ (Ŷ (R)) is a union of closed bounded intervals in A1
R(R), and

the fibres of the conic bundle πŶ over the boundary points of the intervals in πŶ (Ŷ (R))
are reduced.

Proof. Changing variables [x : y : z] 7→ [ax + by : cx + dy : z] for general real numbers
a, b, c, d such that ad − bc 6= 0, we may assume that A(t) does not vanish at the roots
of (4AC − B2)H. Introducing new coordinates x̂ = Ax + B

2
y, ŷ = y

2
, ẑ = Az, we get

a G-equivariant birational map Y 99K Ŷ , where Ŷ is a surface in P1
R × A1

R given by
Ax̂2 + A(4AC − B2)ŷ2 = Hẑ2, where ([x̂ : ŷ : ẑ], t) are coordinates on P1

R × A1
R. This

implies the required assertion. �

Note that the equation (7.3) is not canonically defined by the conic bundle π : S → P1
R.

To check whether two equations like (7.3) determine G-birationally equivalent G-conic
bundles or not, one can use the following result, which we will prove in Section 7.E.

Theorem 7.6. Let η1 : X1 → P1
R and η1 : X2 → P1

R be two smooth G-minimal G-conic
bundles such that their fibers over the point [1 : 0] are smooth and do not have real points.
Suppose that Y1 = X1 \ η−1

1 ([1 : 0]) and Y2 = X2 \ η−1
2 ([1 : 0]) are given in P2

R × A1
R by

A1x
2 +B1xy + C1y

2 = H1z
2,

A2x
2 +B2xy + C2y

2 = H2z
2,

for A1, B1, C1, H1, A2, B2, C2, H2 ∈ R[t] such that (B2
1−4A1C1)H1 and (B2

2−4A2C2)H1 do
not have multiple roots, and the degrees of B2

1 − 4A1C1 and B2
2 − 4A2C2 are even, where

both restrictions η1|Y1 : Y1 → A1
R and η2|Y2 : Y2 → A2

R are given by ([x : y : z], t) 7→ t.
Suppose further that the following conditions are satisfied:

(1) H1 and H2 have only real roots and their leading coefficients are negative,
(2) fibers of the G-conic bundles η1 and η2 over all roots of H1 and H2 are singular

irreducible conics, respectively.

Suppose that we have the G-action on X1 and X2 such that G acts on Y1 and Y2 as follows:

([x : y : z], t) 7→ ([x : y : −z], t),

Then there is a G-equivariant birational map ρ : X1 99K X2 that fits commutative diagram

(7.7) X1

η1
��

ρ // X2

η2
��

P1
R P1

R

if and only if η1(X1(R)) = η2(X2(R)), B2
1 − 4A1C1 = λ(B2

2 − 4A2C2) and H1 = µH2 for
some positive real numbers λ and µ.
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The conditions B2
1 − 4A1C1 = λ(B2

2 − 4A2C2) and H1 = µH2 in Theorem 7.6 are
essential and cannot be omitted, which follows from Corollary 7.4 and Section 7.B below.
In fact, we cannot omit the condition η1(X1(R)) = η2(X2(R)) either.

Example 7.8. In the notations of Theorem 7.6, suppose that Y1 is given in P2
R × A1

R by

(t− 1)(t− 2)(t2 + 1)x2 + (t− 3)(t− 4)(t2 + 2)y2 = tz2,

and Y2 is is given in P2
R × A1

R by (t− 1)(t− 3)(t2 + 1)x2 + (t− 2)(t− 4)(t2 + 2)y2 = tz2.
Thus, we have H1 = H2 = t and

B2
1 − 4A1C1 = B2

2 − 4A2C2 = (t− 1)(t− 2)(t− 3)(t− 4)(t2 + 1)(t2 + 2).

But X1 is R-rational and X2 is not R-rational, since X1(R) is connected and X2(R) is not.

7.B. Special fibers. Let π : S → P1
R be a smooth real G-conic bundle that is G-minimal,

where G = 〈τ〉 for an involution τ ∈ Aut(S) that acts trivially on P1
R. Then τ pointwise

fixes a smooth irreducible curve C ⊂ S that is a two-section of the conic bundle π. Let g
be the genus of the curve C, let F be a (complex) singular fiber of the conic bundle π, let
F1 and F2 be its irreducible components. Then F1 · C = F2 · C = 1, and the intersection
F1 ∩ F2 consists of one point. Moreover, it follows from the G-minimality of the conic
bundle π : S → P1

R that

• either F ∩ C = F1 ∩ F2,
• or F1 ∩ F2 6∈ C and F is real.

In the latter case, the curves F1 and F2 are both G-invariant and thus must be swapped
by the action of the Galois group Gal(C/R). In this case (when F1 ∩F2 6∈ C), we will say
that the singular fiber F = F1 + F2 is special. We let

δS = the number of special fibers of the G-minimal conic bundle π : S → P1
R.

We have K2
S = 6 − 2g − δS. Moreover, if π : S → P1

R is G-exceptional, then δS = 0.
Furthermore, if S is R-rational, then δS ∈ {0, 1, 2}, see Remark 2.3.

Lemma 7.9. Suppose that g > 1. Let χ : S 99K X be a G-birational map such that X is
a smooth surface, and there exist G-minimal conic bundle η : X → P1

R. Then δS = δX .

Proof. Follows from Remark 2.13 and the equality K2
S = 6− 2g − δS. �

In particular, if g > 1 and δS > 0, then S is not G-birational to a G-exceptional
G-minimal conic bundle. In fact, we can say more:

Lemma 7.10. Suppose that g > 2. If π : S → P1
R is not G-exceptional, then S is not

G-birational to a G-exceptional G-minimal conic bundle.

Proof. We have K2
S 6 2, so the proof is similar to the proof of Lemma 7.9. �

On the other hand, if g = 1 and δS = 0 the conic bundle π : S → P1
R is not G-

exceptional, then S can be G-birational to a G-exceptional G-minimal conic bundle, see
Example 8.6.

It is very easy to locate special fibers of the G-conic bundle provided by Theorem 7.1.
Namely, in the assumptions and notations of Theorem 7.1, the special fibers of the conic
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bundle η : X → P1
R are the fibers of the morphism η over the roots of the polynomial H.

Then δX = deg(H).

7.C. Iskovskikh involutions. As in Section 7.B, let S be a real smooth projective sur-
face, let τ be an involution in Aut(S), let G = 〈τ〉, and let π : S → P1

R be a G-minimal
conic bundle such that τ acts trivially on P1

R. The involution τ pointwise fixes a smooth
irreducible curve C ⊂ S that is a two-section of the conic bundle π. Let g be the genus
of the curve C, and let δS be the number of special fibers of the conic bundle π. Then

K2
S = 6− 2g − δS .

Suppose, in addition, that the surface S is R-rational and g > 1. Then δS ∈ {0, 1, 2},
and τ induces a birational involution ι ∈ Bir(P2

R). If the conic bundle π : S → P1
R is not

G-exceptional, we say that both involutions τ and ι are

• 0-twisted Iskovskikh involution if δS = 0,
• 1-twisted Iskovskikh involution if δS = 1,
• 2-twisted Iskovskikh involution if δS = 2.

We will denote by Ig the class of all Iskovskikh birational involutions in Bir(P2
R) whose

fixed curves have genus g > 1. Similarly, we will denote by I′g and I′′g the classes consisting
of all 1-twisted Iskovskikh involutions and 2-twisted Iskovskikh involutions whose fixed
curves have genus g > 1, respectively. We deliberately do not define the classes I0, I

′
0 and

I′′0, as we shall see in the proof of Main Theorem (Section 8) that they are contained in
L ∪Q ∪ T4.

Lemma 7.11. Let , ι, ι′, ι′′ be birational involutions in the classes dJg, Ig, I′g, I′′g ,

respectively, where g > 1. Then they are pairwise non-conjugate in Bir(P2
R) with only

possible exception of involutions  and ι being conjugate in the case when g = 1 and
F () ' F (ι).

Proof. The statement follows from Lemma 7.9 and Lemma 7.10. �

Thus, we see that the classes dJg, Ig, I
′
g, I

′′
g are pairwise disjoint for g > 2. Similarly,

the classes I1, I′1, I′′1 are pairwise disjoint, and the classes dJ1, I′1, I′′1 are also pairwise
disjoint. On the other hand, we will see in Example 8.6 that dJ1 ∩ I1 6= ∅. We do not
know whether dJ1 = I1 or not.

7.D. Proof of Theorem 7.1. In this section, we prove Theorem 7.1. During the proof,
we will slightly abuse our original conventions and consider quasi-projective conic bundles.
As usual, all surfaces are assumed to be real and geometrically rational.

Let S be a smooth projective surface, let τ be an involution in Aut(S), and let G = 〈τ〉.
Suppose that there is G-minimal conic bundle π : S → P1

R such that G acts trivially on
P1
R, and π is not G-exceptional. Then π(S(R)) 6= P1

R(R) by Proposition 6.5. To prove
Theorem 7.1, we must construct G-equivariant commutative diagram (7.2).

To start with, let us choose φ in (7.2). Let P be any point in P1
R such that P 6∈ π(S(R)).

Then we take any φ ∈ PGL2(R) such that φ(P ) = [1 : 0]. Now, we swap π with φ ◦ π.
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Then the fiber π−1([1 : 0]) is smooth and has no real points. Hence, to prove Theorem 7.1,
we may assume that the map φ in (7.2) is identity.

We set U = S \ π−1([1 : 0]). Then U is G-invariant, and π induces G-equivariant conic
bundle πU : U → A1

R. Observe that U is isomorphic to a closed subset in P2
R × A1

R, and
the conic bundle πU is induced by the natural projection P2

R × A1
R → A1

R.

Lemma 7.12. There exists G-equivariant commutative diagram

U

πU
��

// W

πW
��

A1
R A1

R

such that U 99K W is a birational map, W is a smooth surface in P2
R × A1

R given by

(7.13) A(t)x2 + C(t)y2 = H(t)z2

for a suitable choice of coordinates ([x : y : z], t) on P2
R × A1

R, where A,C,H ∈ R[t],
the morphism πW is induced by the natural projection P2

R ×A1
R → A1

R, and the G-action
on the surface W is given by ([x : y : z], t) 7→ ([x : y : −z], t).

Proof. The surface U is given in P2
R × A1

R by

A0(t)x2 +B0(t)xy + C0(t)y2 +H0(t)z2 + E0(t)xz + F0(t)yz = 0

for some polynomials A0, B0, C0, H0, E0, F0 ∈ R[t]. This equation defines a conic C ⊂ P2
R(t),

which is the scheme generic fibre of the conic bundle πU : S → A1
R. By Proposition 6.5,

this conic C does not have points in R(t), because the conic bundle π is not G-exceptional.
Since G acts trivially on A1

R, its action on U gives a geometric G-action on the conic C,
which lifts to a linear action on P2

R(t). Therefore, linearly changing coordinates on P2
R(t),

we may assume that the group G acts on P2
R(t) by the involution [x : y : z] 7→ [x : y : −z].

Then the conic C is given in P2
R(t) by the equation

A1(t)x2 +B1(t)xy + C1(t)y2 = H1(t)z2

for some A1 B1, C1, H1 in R(t), where we consider [x : y : z] as coordinates on P2
R(t).

Note that A1 6= 0, because C has no points in R(t). Thus, completing the squares and
clearing the denominators, we may assume that C is given by

A2(t)x2 + C2(t)y2 = H2(t)z2

for some polynomials A2, C2, H2 ∈ R[t]. We may further assume that gcd(A2, C2, H2) = 1.
Scaling x, y, z, we may also assume that A2, C2, H2 have no multiple roots.

If R = gcd(A2, C2) 6= 1, then A2 = RA3 and C2 = RC3, so multiplying the equation of
the conic C by R and scaling the coordinates, we see that C is now given by

A3(t)x2 + C3(t)y2 = H3(t)z2,
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where A3, C3, H3 = RH2 have no multiple roots, while A3 and C3 are co-prime. If
T = gcd(A2, H2) 6= 1, A2 = TA3, H2 = TH3 we can again multiply the equation by T ,
and after a change of coordinates get

A3(t)x2 + C3(t)y2 = H3(t)z2,

where C3 = TC2, gcd(A3, H3) = 1. Note that C3 is also coprime to A3. Indeed, if
gcd(C3, A3) = P 6= 1 then P divides A2. Since gcd(A2, C2) = 1, we have gcd(T,C2) = 1
and thus P divides either T or C2. The latter case is impossible, as otherwise P divides
both A2 and C2, in the former case P divides both T and A3, so A2 = TA3 has a multiple
root, a contradiction. The same argument shows that we may reach gcd(C3, H3) = 1.

Finally, let W be the closed subset in P2
R × A1

R that is given by A3(t)x2 + C3(t)y2 =
H3(t)z2. Then W is smooth, since A, C, H do not have multiple roots and are pairwise
co-prime. This completes the proof of the lemma, because the coordinate changes we did
give the required G-equivariant birational map U 99K W , since we did not change t. �

We just replaced our conic bundle πU : U → A1
R with the conic bundle πW : W → A1

R,
which is given in P2

R × A1
R by a very simple equation. However, this comes with a price:

• the conic bundle πU : U → A1
R is relatively G-minimal over A1

R by our assumption,
• the conic bundle πW : W → A1

R is not necessarily relatively G-minimal over A1
R,

because the constructed fiberwise G-birational map U 99K W can destroy G-minimality.
Observe that the conic bundle πW : W → A1

R is relatively G-minimal over A1
R if and only if

the polynomial H(t) in (7.13) has only real roots, and the fiber of the morphism πW over
every root of the polynomial H(t) is a singular irreducible conic.

Now, we are going to explicitly apply G-equivariant relative Minimal Model Program
to the conic bundle πW : W → A1

R from Lemma 7.12 to birationally transform it into
a G-minimal conic bundle which is also explicitly given in P2

R × A1
R.

Lemma 7.14. Let Z be a smooth surface in P2
R × A1

R that is given by

A(t)x2 +B(t)xy + C(t)y2 = H(t)z2

for some polynomials A,B,C,H ∈ R[t], let πZ : Z → A1
R be the morphism induced by

the natural projection P2
R × A1

R → A1
R, where ([x : y : z], t) are coordinates on P2

R × A1
R.

Let us fix a G-action on the surface Z that is given by ([x : y : z], t) 7→ ([x : y : −z], t).
Then there exists a G-equivariant commutative diagram

Z

πZ
��

// Z̃

π
Z̃

��
A1

R A1
R

such that Z 99K Z̃ is a birational map, and Z̃ is a smooth surface in P2
R × A1

R given by

Ã(t)x2 + B̃(t)xy + C̃(t)y2 = H̃(t)z2
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for some Ã, B̃, C̃, H̃ ∈ R[t] such that the polynomial H̃(t) has only real roots, the fiber of

the morphism πZ̃ over every root of H̃(t) is a singular irreducible conic, and the G-action

on the surface Z̃ is given by ([x : y : z], t) 7→ ([x : y : −z], t).

Proof. First, we observe that the smoothness of the surface Z is equivalent to the condition
that the polynomial (4AC −B2)H does not have multiple roots.

Second, we suppose that H(t) has a real root such that the fiber of πZ over this root is
a conic with two real components. For simplicity, we may assume that this root is t = 0.
Write A(t) = A0 + tA1(t), B(t) = B0 + tB1(t), C(t) = C0 + tC1(t), where A0, B0, C0 ∈ R.
Then π−1

Z (0) is given by A0x
2 +B0xy + C0y

2 = t = 0. By our assumption, we have

A0x
2 +B0xy + C0y

2 = (cx− ay)(dx+ by)

for some real numbers a, b, c, d such that the polynomials cx−ay and dx+by are co-prime.
Let u = t(cx− ay), v = dx+ by, λ = ad+ bc, so that

x =
1

λt
(bu+ tav) ,

y =
1

λt
(ctv − du) .

Substituting this into the defining equation of Z, we see get the equation

t2H(t)z2 = t
(
A0x

2 +B0xy + C0y
2
)

+ t2
(
A1(t)x2 +B1(t)xy + C1(t)y2

)
=

= uv

(
1 +

t

λ2
(2abA1(t)− 2cdC1(t) + (bc− ad)B1(t))

)
+

+ u2 1

λ2

(
b2A1(t) + d2C1(t)− bdB1(t)

)
+ v2 t

2

λ2

(
a2A1(t) + c2C1(t) + acB1(t)

)
,

where H ∈ R[t] such that H = tH(t). Let α : P2
R × A1

R 99K P2
R × A1

R be the map given by

([x : y : z], t) 7→ ([t(cx− ay) : dx+ by : tz], t).

Then the map α induces a G-equivariant birational map Z 99K Z such that Z is a surface
in P2

R × A1
R that is given by

A(t)x2 +B(t)xy + C(t)y2 = H(t)z2

for some A,B,C ∈ R[t] such that the polynomial (4A(t)C(t) − B(t)2)H(t) is a positive
scalar multiple of the polynomial (4A(t)C(t)−B(t)2)H(t). So, we see that Z is smooth.
Therefore, iterating this process, we may assume that the fibers of our original conic
bundle πZ : Z → A1

R over every real root of the polynomial H(t) is an irreducible conic.
Finally, suppose that H(t) has a non-real root t = ε ∈ C. Then the fiber of the conic

bundle πZ over this root is given by t− ε = A(ε)x2 +B(ε)xy + C(ε)y2 = 0, and

A(ε)x2 +B(ε)xy + C(ε)y2 = (cx− ay)(dx+ by)
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for a, b, c, d ∈ C such that cx− ay and dx+ by are co-prime, since πZ has reduced fibers.
Let αε : P2

R × A1
R 99K P2

R × A1
R and αε : P2

R × A1
R 99K P2

R × A1
R be rational maps given by

([x : y : z], t) 7→ ([(t− ε)(cx− ay) : dx+ by : (t− ε)z], t)

and

([x : y : z], t) 7→ ([(t− ε̄)(c̄x− āy) : d̄x+ b̄y : (t− ε̄)z], t),

respectively. Then the composition αε̄ ◦ αε is a rational map defined over R that induces

a G-equivariant birational map Z 99K Ẑ such that Ẑ is a surface in P2
R × A1

R given by

Â(t)x2 + B̂(t)xy + Ĉ(t)y2 = Ĥ(t)z2

for polynomials Â(t), B̂(t), Ĉ(t), Ĥ(t) ∈ R[t] such that

Ĥ(t) =
H(t)

(t− ε)(t− ε̄)
,

and (4Â(t)Ĉ(t)−B̂(t)2)Ĥ(t) = ξ(4A(t)C(t)−B(t)2)Ĥ(t) for some positive real number ξ.

In particular, we see that the surface Ẑ is smooth. Now, iterating this process, we obtain

the required G-equivariant birational transformation Z 99K Z̃. �

Now, we are ready to finish the proof of Theorem 7.1.

Proof of Theorem 7.1. Recall that U = S \ π−1([1 : 0]), and the fiber π−1([1 : 0]) is
smooth. Applying Lemmas 7.12 and 7.14, we get G-equivariant commutative diagram

U

πU
��

// Y

πY
��

A1
R A1

R

such that Y is a smooth surface {A(t)x2 + B(t)xy + C(t)y2 − H(t)z2 = 0} ⊂ P2
R × A1

R,
where A,B,C,H ∈ R[t], the group G acts on the surface Y by

([x : y : z], t) 7→ ([x : y : −z], t),

and πY is given by ([x : y : z], t) 7→ t, where ([x : y : z], t) are coordinates on P2
R × A1

R.
Since Y is smooth, we see that (B2 − 4AC)H does not have multiple roots. It follows

from Lemmas 7.12 and 7.14 that we may further assume that H(t) has only real roots,
and the fiber of πY over every root of the polynomial H(t) is a singular irreducible conic.
Then the conic bundle πY : Y → A1

R is relatively G-minimal over A1
R.

Multiplying the defining equation of the surface Y by ±1, we may further assume that
the leading coefficient of the polynomial H(t) is negative.

Now, there exists a completion Y ⊂ X such that X is a projective smooth surface,
the action of the group G = 〈τ〉 on the surface Y extends to its regular action on X,
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the morphism πY : Y → A1
R induces a G-equivariant morphism η : X → P1 that maps

the complement X\Y to the point [1 : 0] and fits the G-equivariant commutative diagram:

S

π
��

χ // X

η
��

P1
R P1

R

where χ is a composition of the constructed G-equivariant birational map U 99K Y with
the G-equivariant embedding Y ⊂ X.

Moreover, applying relative G-Minimal Model Program to X over P1
R, we may further

assume that η : X → P1
R is a G-minimal conic bundle. Since π−1([1 : 0]) is smooth and

has empty real locus by assumption, we conclude that the fiber η−1([1 : 0]) = X \ Y is
also smooth and has empty real locus. Note that η(X(R)) = π(S(R)), so that η(X(R))
is a union of intervals in P1

R(R), because the conic bundle π : S → P1
R is assumed to be

non-exceptional.
To complete the proof of Theorem 7.1, it remains to explain why deg(B2−4AC) is even.

Let C be the curve in X that is fixed by τ . Then η induces the double cover C → P1
R,

which is not ramified over the point [1 : 0], because the fiber η−1([1 : 0]) is smooth.
On the other hand, the induced double cover C \ (C ∩ η−1([1 : 0])) → A1

R is branched
exactly at the roots of the polynomial B2 − 4AC, which does not have multiple roots.
Therefore, since the number of ramification points of the double cover C → P1

R is even,
we conclude that deg(B2 − 4AC) is also even. Theorem 7.1 is proved. �

7.E. Proof of Theorem 7.6. Let us use all assumptions and notations of Theorem 7.6.
Set πY1 = η1|Y1 and πY2 = η1|Y2 . Let ∆1 = 4A1C1 − B2

1 and ∆2 = 4A2C2 − B2
2 . Then,

applying Corollary 7.5 twice, we obtain two G-equivariant commutative diagrams

Y1

πY1
��

χ1 // Ŷ1

π
Ŷ1

��
A1

R A1
R

and

Y2

πY2
��

χ2 // Ŷ2

π
Ŷ2

��
A1

R A1
R

such that Ŷ1 and Ŷ2 are (possibly singular) surfaces in P1
R×A1

R given by Â1x
2 + Â1∆1y

2 =

H1z
2 and Â2x

2 + Â2∆2y
2 = H2z

2, respectively, where Â1 and Â2 are polynomials in R[t]

such that Â1, Â2, Â1∆1, Â2∆2 do not have multiple roots, Â1 and H1 are co-prime, Â2

and H2 are co-prime, Â1∆1 and H1 are co-prime, Â2∆2 and H2 are co-prime, both conic

bundles πŶ1 and πŶ2 are given by ([x : y : z], t) 7→ t, the G-actions on both surfaces Ŷ1
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and Ŷ2 are given by ([x : y : z], t) 7→ ([x : y : −z], t), both χ1 and χ2 are birational maps
that are biregular along singular fibers of the conic bundles πY1 and πY2 , respectively.

First, we suppose that there exists a G-equivariant birational map ρ : X1 99K X2 such
that ρ fits the commutative diagram (7.7). Then η1(X1(R)) = η2(X2(R)), since ρ is an
isomorphism away from finitely many fibers of η1 and η2. Moreover, the map ρ induces
an isomorphism between the G-fixed curves in X1 and X2. Hence, using Corollary 7.4,
we get ∆1 = λ∆2 for some λ ∈ R∗. Furthermore, the map ρ is an isomorphism along
singular fibers of the conic bundles η1 and η2, because it is a composition of elementary
transformations. Thus, in particular, ρ maps special singular fibers of η1 into special
singular fibers of η2, which implies that H1 = µH2 for some µ ∈ R∗. Since, by assumption,
the leading coefficients of H1 and H2 are negative, we see that µ > 0. This gives λ > 0.
Indeed, let t0 be a general point in A1

R(R) such that t0 6∈ η1(X1(R)). Since ρ1 is an
isomorphism along the fiber π−1

Y1
(t0), we get ∆1(t0) > 0. Similarly, we get ∆2(t0) > 0,

which implies that λ > 0. This proves one direction of Theorem 7.6.
To prove the other direction of Theorem 7.6, we suppose that η1(X1(R)) = η2(X2(R)),

and there are positive real numbers λ and µ such that ∆1 = λ∆2 and H1 = µH2. Let us
show that there exists a G-equivariant birational map ρ : X1 99K X2 that fits (7.7). By

Lemma A.5, to prove this, it is enough to show that the forms 〈Â1, Â1∆1〉 and 〈Â2, Â2∆2〉
are equivalent over R(t), which can be shown by using Proposition A.10.

Let us check that all conditions of Proposition A.10 applied to the forms 〈Â1, Â1∆1〉
and 〈Â2, Â2∆2〉 are satisfied. First, we observe that the condition (1) of Proposition A.10
is satisfied, as ∆1 = λ∆2 and λ > 0.

Now the option (2.a) is clearly not possible, so assume that Â1(ε) = (Â1∆1)(ε) = 0.

Then ∆1(ε) 6= 0, because Â1∆1 have no multiple roots. Thus, we see that

(Â1)ε(ε)(Â1∆1)ε(ε) =
(

(Â1)ε(ε)
)2

∆1(ε)

which is negative, since ∆1(ε) = −B1(ε)2. This shows that (2.b) holds.

To check (2.c), we use exactly the same argument to show that (Â1)ε(ε)(Â1∆1)ε(ε) < 0

and (Â2)ε(ε)(Â2∆2)ε(ε) < 0.

We now check (3). Let us denote the leading coefficients of Âi, Âi∆i and Hi by αi, βi
and γi, respectively. Assume αiβi < 0. Recall that π(Yi(R)) is a finite union of closed
intervals bounded by the roots of ∆1H1; let εmin, εmax ∈ R be the smallest and the largest
roots of ∆1H1, respectively. But then for t � εmax the fiber over t is a conic with non-
empty real locus (since the coefficients at x2 and y2 are of different signs), which is not
possible. Therefore, both αi and βi must be positive (recall that we assume γi < 0).

We now claim that deg Â1 and deg Â2 have the same parity, which will finish the proof,

because the parities of deg Âi and deg Âi∆i are the same (as deg ∆i is even). Assume the

contrary, i.e. deg Â1 = 2n, deg Â2 = 2m+1. For t� εmin the real loci of the fibers π−1
1 (t)

and π−1
2 (t) are diffeomorphic to the real loci of the conics

α1t
2nx2 + β1t

2n+deg ∆1y2 = γ1t
δS1z2 and α2t

2m+1x2 + β2t
2m+1+deg ∆2y2 = γ2t

δS2z2,
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respectively. But since αi, βi are positive, γi are negative, δS1 = δS2 = k and deg ∆i is
even, these conics are respectively isomorphic for any t� εmin over R to

x2 + y2 = (−1)kz2 and − x2 − y2 = (−1)kz2,

respectively. But for any k exactly one of these conics has non-empty real locus, which

contradicts the condition η1(X1(R)) = η2(X2(R)). We conclude that deg Â1 and deg Â2

have the same parity.

Therefore, we can apply Proposition A.10 to show that the forms 〈Â1, Â1∆1〉 and

〈Â2, Â2∆2〉 are equivalent over R(t). This completes the proof of Theorem 7.6.

8. Classification

8.A. Proof of Main Theorem: classification. Let ι be an involution in the group
Bir(P2

R). First, regularizing the action of 〈ι〉, we may assume that (up to conjugation in
Bir(P2

R)) the involution ι is given by a biregular involution τ ∈ Aut(S) of an R-rational
smooth projective surface S, see Section 1.C. Let G = 〈τ〉. Then, applying G-equivariant
Minimal Model Program, we may further assume that

(1) either Pic(S)G ' Z, and S is a real R-rational del Pezzo surface;
(2) or Pic(S)G ' Z2, and there exists a G-equivariant conic bundle π : S → P1

R, and
S is again R-rational.

Lemma 8.1. Suppose that Pic(S)G ' Z. Then K2
S ∈ {1, 2, 4, 8, 9}

Proof. Let us consider S as complex surface. Denote by σ the antiholomorphic involution
that generates Gal(C/R). Let L be a (−1)-curve in S, let C be the 〈σ, τ〉-orbit of L, and
let k be the number of irreducible components of the curve C. Then C ∼ n(−KS) for
some n ∈ Z>0. Then k = −KS · C = nK2

S.
In particular, if K2

S = 7, then k = 7n; but k 6 3, because S contains three (−1)-curves.
Similarly, if K2

S = 6, then S contains six (−1)-curves, so 6 > k = 6n gives k = 6, but
C cannot consists of 6 irreducible components, because the group 〈σ, τ〉 ' (Z/2)2 cannot
transitively permute 6 objects. Likewise, if K2

S = 5, then S contains ten (−1)-curves, so
that 10 > k = 5n gives k ∈ {5, 10}, which leads to a contradiction as above. If K2

S = 3,
then S is a smooth cubic surface in P3

R, and S contains twenty seven (−1)-curves defined
over C. which implies that one of them must be 〈σ, τ〉-invariant, so rk Pic(S)G > 1. �

Lemma 8.2. One has the following:

(1) If K2
S > 5 and K2

S 6= 8, then ι is conjugate to a linear involution of P2
R.

(2) If K2
S = 8 then we have the following non-G-birationally isomorphic pairs:

(a) S ' Q3,1, τ is the antipodal involution [w : x : y : z] 7→ [w : x : y : −z].
(b) S ' P1

R × P1
R and τ acts by ([x : y], [s : t]) 7→ ([x : y] : [t : −s]).

In both cases, τ is not linearizable.

Proof. (1) If Pic(S)G ' Z then K2
S = 9 by Lemma 8.1 and we are done. Thus, we may

assume that Pic(S)G ' Z2, and there exists a G-equivariant conic bundle π : S → P1
R.

Furthermore, we may assume that S is G-minimal in the sense of [9], since otherwise we
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reduce to the case Pic(S)G ' Z. Then K2
S 6= 7 by [14, Theorem 5]. If K2

S ∈ {5, 6}, then it
follows from the proof of [14, Theorem 5] that S is a del Pezzo surface. If K2

S = 6, then π
has a pair of non-real conjugate disjoint (−1)-sections, so S is not G-minimal. If K2

S = 5,
the S is the blow-up of P2

R in four real points or in two real points and a pair of non-real
conjugate points or of two pairs of non-real conjugate points. In each case we check that
S is not G-minimal.

(2) We now assume K2
S = 8. If S is a del Pezzo surface with Pic(S)G ' Z then S ' Q3,1

or S ' Q2,2. If S is a G-minimal conic bundle, then S ' Fn for some n > 0. In this
case, using elementary transformations one can construct a G-equivariant commutative
diagram

S

π
��

χ // Fm
η

��
P1
R P1

R

such that χ is a birational map, η is a natural projection, and m ∈ {0, 1}. If m = 1, then
τ is conjugate to a linear involution of P2

R. If m = 0, then Fm ' Q2,2 ' P1
R × P1

R. So, it
remains to study the involutions on Q3,1 and Q2,2. We have the following possibilities:

S τ Sτ Sτ (R)

Q3,1 [w : x : y : z] 7→ [w : −x : −y : z] 4 points 2 points

Q3,1 [w : x : y : z] 7→ [w : −x : y : z] { y2 + w2 = z2} S1

Q3,1 [w : x : y : z] 7→ [w : x : y : −z] { x2 + y2 + z2 = 0 } ∅
Q2,2 switching the factors the diagonal S1

Q2,2 fiberwise (see below) 4 points 0, 2 or 4 points

Here and in what follows, Sτ denotes the fixed locus of τ on S. If τ fixes a real point in
S = Q3,1 or S = Q2,2, then τ is linearizable via the projection from this point. If τ does
not fix a real point in Q3,1, then τ is not linearizable, as follows from the classification
of Sarkisov links [15]. Alternatively, one can show that τ is not linearizable by noticing
that existence of G-fixed real smooth points is an equivariant birational invariant when
G ' Z/2 (compare with [16]). So, it remains to study the involutions on Q2,2 which do
not fix real points. Recall that every element of PGL2(R) of order 2 is conjugate to one
of the following:

(1) α : [x : y] 7→ [y : x], fixing the points [1 : 1] and [1 : −1];
(2) α′ : [x : y] 7→ [y : −x], fixing the points [1 : i] and [1 : −i].

So, a fiberwise automorphism of S = Q2,2 ' P1
R × P1

R has a real fixed point, unless it
is conjugate to (id, α′), (α, α′), or (α′, α′). In the first case, there are no G-equivariant
Sarkisov links starting from S, so the corresponding action is not conjugate to any of the
actions described above. Moreover, (id, α′) and (α′, α′) are conjugate by the involution

([s : t], [x : y]) 7→ ([ty + sx : sy − tx], [x : y]) ,
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and (α, α′) and (α′, α′) are conjugate by the involution

([s : t], [x : y]) 7→ ([sy : tx], [y : x]) .

This finishes the proof. �

Lemma 8.3. Suppose that K2
S = 4 and Pic(S)G ' Z. Then one of the following two

possibilities holds:

(1) Sτ = F (τ) is a smooth genus 1 curve with non-empty real locus and
(a) either Pic(S)G ' Z, S/G ' Q3,1 and S(R) ≈ S2;
(b) or Pic(S)G ' Z, S/G ' Q3,1 and S(R) ≈ S1 × S1;

(2) F (τ) = ∅, Sτ consists of four points, and at least two of them are real.

Proof. The map given by the anticanonical linear system | − KS| embeds the surface S
into P4

R as a complete intersection of two real quadrics. One can easily see that Sτ is
either a smooth genus 1 curve in |−KS|, or four points (possibly complex conjugate), see
e.g. [3, § 9]. Let η : S → Z = S/τ be the quotient map. Then Pic(Z) ' Z.

(1) Assume Sτ is a smooth genus 1 curve. Then Z is smooth and by the Hurwitz
formula one has K2

Z = 1
2
(2KS)2, so Z ' Q3,1 and the quotient map S → S/G is branched

over a divisor E of bidegree (2, 2) in ZC ' P1
C × P1

C, which is a complete intersection of
the quadric Z with another quadric surface in P3

R. Note that E is a real genus 1 curve,
so E(R) ∈ {∅,S1,S1 t S1}. In fact, the case E(R) = ∅ is impossible, as S(R) is then
disconnected. The other two possibilities give S(R) ≈ S2 and S(R) ≈ S1×S1, respectively.

(2) To complete the proof, we have to exclude the case when Sτ consists of two pairs
of complex conjugate points. Assume this is the case. Then Z is a singular del Pezzo

surface of degree K2
Z = 2, which has two pairs of complex conjugate A1 points. Let Z̃ be

the minimal resolution of Z. Then Z̃(R) ≈ Z(R) = η(S(R)). Thus Z̃ is R-rational by

Theorem 2.1. Run the minimal model program over R on Z̃. We get a birational morphism

Z̃ → Z such that Z is a smooth R-rational and R-minimal surface. By Theorem 2.4, one

has K2
Z
> 5. Since rk Pic(Z̃) = 3 and K2

Z̃
= 2, we get rk Pic(Z) = 1 and K2

Z
∈ {5, 6}.

However, this is not possible, see e.g. [29]. �

So, if Pic(S)G ' Z and K2
S ∈ {1, 2}, it follows from results of Sections 4 and 5 that

τ belongs to the classes B4, G3 or K1. If K2
S = 8 then it follows from Lemma 8.2 that

τ belongs either to the class L or Q. If K2
S > 5 and K2

S 6= 8 then τ belongs to L by
the same Lemma. Moreover, if Pic(S)G ' Z and K2

S = 4 then there exists the following
G-Sarkisov link of type I:

S

��

S ′
ρoo

π′

��
pt P1

R
oo

where ρ is a blow-up of a G-fixed real point which exists by Lemma 8.3 (any such point is
not contained in a (−1)-curve of S), S ′ is a cubic surface in P3

R such that Pic(S ′)G ' Z2,
and π′ is a G-equivariant conic bundle. Now, using Lemma 8.1, to complete the proof of
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the classification part of the main theorem, we may assume that K2
S 6 4, Pic(S)G ' Z2

and there exists a G-equivariant conic bundle π : S → P1
R. In this case, we have

Lemma 8.4. Suppose that F (τ) = ∅. Then τ is contained in one of the following classes:
T4n, T′4n+2, or T′′4n for some n > 1.

Proof. If τ acts non-trivially on the base of the conic bundle π, then τ is conjugate to a
Trepalin involution by Theorem 3.8. Let τ act trivially on the base of π. Then it follows
from the results of Sections 6 and 7 that K2

S = 4 and there exist 2 special fibres of πS and
Sτ is a smooth rational curve that is a double section of πS and two points (the singular
points of the special fibres). Let us show that τ ∈ T4.

Using Theorem 7.1, we may assume that the fiber π−1
S ([1 : 0]) is smooth and does not

have real points, the quasi-projective surface Y = S \ π−1
S ([1 : 0]) is given in P2

R × A1
R by

A(t)x2 +B(t)xy + C(t)y2 + (t− a)(t− b)z2 = 0

for some polynomials A,B,C ∈ R[t] such that (B2 − 4AC)(t − a)(t − b) does not have
multiple roots and deg(B2−4AC) is two, the fibers of πS over t = a and t = b are singular
irreducible conics and the involution τ acts on Y by ([x : y : z], t) 7→ ([x : y : −z], t), and
the restriction map πS|Y : Y → P1

R \ [1 : 0] = A1
R is the map given by ([x : y : z], t) 7→ t,

where ([x : y : z], t) are coordinates on P2
R ×A1

R. After an affine change of the coordinate
t, we may assume that ∆ = 4AC −B2 is one of the polynomials t2 + 1, −(t2 + 1), t2 − 1,
or −(t2 − 1).

Since the fibers of πS over t = a and t = b are singular irreducible conics, we see
that ∆(a) > 0 and ∆(b) > 0. This rules out the case ∆(t) = −(t2 + 1). Moreover, if
∆(t) = −(t2 − 1), then the real locus of π−1

S ([1 : 0]) is non-empty, which contradicts the
assumptions above. Hence ∆(t) = t2 − 1 or ∆(t) = t2 + 1 and in the latter case, we
have a, b /∈ [−1, 1]. Recall that πS(S(R)) is a single interval, so πS(S(R)) = [a, b]. If
∆(t) = t2 − 1, then (−1, 1) ⊂ [a, b]. This implies that [−1, 1] ⊂ [a, b].

Applying Theorem 7.6, we obtain a G-equivariant commutative diagram

S

πS
��

// S ′

πS′
��

P1
R P1

R

such that S 99K S ′ is birational map and S ′ is smooth projective surfaces, πS′ is a G-
minimal conic bundle and the quasi-projective surface Y ′ = S ′ \ π−1

S′ ([1 : 0]) is a given in
P2
R ×A1

R by x2 + ∆(t)y2 + (t− a)(t− b)z2 = 0. the involution τ acts on the surface Y ′ by
([x : y : z], t) 7→ ([x : y : −z], t), and πS′ induces the map Y ′ → A1

R, ([x : y : z], t) → t.
Let U in Y ′ be the G-invariant subset given by y 6= 0. Then U is given in A3

R by
x2 + ∆(t) + (t − a)(t − b)z2 = 0, where we consider x, z, t as affine coordiantes on A3

R.
Introducing new affine coordinate y = (t − a)z, we see that U is a complete intersection
in A4

R given by {
x2 + ∆(t) + y(y + z(b− a)) = 0,

y = (t− a)z.
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Observe that U admits a G-equviariant compactification X ⊂ P4
R given by{

x2 + ∆̃(t, w) + y(y + z(b− a)) = 0,

yw = (t− aw)z.

where ∆̃(t, w) = t2 + w2 if ∆(t) = t2 + 1 and ∆̃(t, w) = t2 − w2 if ∆(t) = t2 − 1, and τ
acts on X as follows [x : y : z : t : w] 7→ [x : −y : −z : t : w], where [x : y : z : t : w] are
homogeneous coordinates on P4

R.
Observe that Pic(X)G ' Z2, and X admits two conic bundle structures, namely

π1, π2 : X → P1
R given by π1 : [x : y : z : t : w] 7→ [y : z] and π2 : [x : y : z : t : w] 7→ [z : w].

Then π1 and π2 are both G-minimal conic bundles. In fact, we have constructed the
following G-equivariant commutative diagram:

S

πS
��

// S ′

πS′
��

// X

π1
��

P1
R P1

R P1
R

Furthermore, τ fixes pointwisely the conic C = {y = z = x2 + ∆̃(t, w) = 0} and the two
points p1 = [0 : 0 : 1 : 0 : 0] and p2 = [0 : a−b : 1 : 0 : 0]. Note that τ acts non-trivially on
the base of π2, and C is the fiber of π2 over [0 : 1], and the points p1 and p2 are contained
in the fiber π−1

2 ([1 : 0]). It follows from Theorem 3.8 that τ ∈ T4. �

Thus in what follows we assume that F (τ) is a smooth curve of genus g > 1. In
particular, τ acts trivially on the base P1

R. If S is G-exceptional then τ is a de Jonquières
involution of genus g, studied in Section 6, i.e. it belongs to the class dJg. Now assume
that π : S → P1

R is not G-exceptional. By Theorem 7.1, the involution τ is a δS-twisted
Iskovskikh involution, where δS ∈ {0, 1, 2} is the number of special fibers of π, see Section
7.B. So, ι is contained in one of the classes Ig, I

′
g, I

′′
g . This completes the proof of the

classification part of Main Theorem.

8.B. Proof of Main Theorem: conjugation. Now, let ι and ι′ be involutions in
Bir(P2

R). We already know from Section 8.A that ι and ι′ are contained in one of the
classes L, Q, T4n, T′4n+2, T′′4n, B4, G3, K1, dJg, Ig, I

′
g, I

′′
g , where n > 1 and g > 1. We

now show that these classes are actually disjoint, with on possible exception: involutions
in dJ1 and I1 may be conjugate (see Example 8.6).

We first explore possible conjugations between involutions fixing an irrational curve,
i.e. for which F (τ) 6= ∅. The classes B4, G3 and K1 are pairwise different, because they
fix non-isomorphic curves. Moreover, B4, G3 are disjoint from the classes of de Jonquières
and Iskovskikh involutions with g > 1, as the latter two fix a (hyper)elliptic curve, and
the class K1 is disjoint from dJ1, I1, I′1 and I′′1 by Theorem 2.8. By Lemma 7.11, the
classes dJg, Ig, I

′
g, I

′′
g with g > 1 are non-intersecting, with the only possible exception

dJ1 ∩ I1 6= ∅, mentioned in the statement (see Example 8.6 below).
It remains to investigate the conjugacy between involutions, for which F (τ) = ∅; those

include the classes L,Q and Trepalin involutions T4n, T′4n+2, T′′4n, n > 1. By Lemma 8.2,
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the classes L and Q are disjoint. Remark 2.13 implies that Trepalin involutions are
neither linearizable, nor conjugate to an involution in Q. Same Remark implies that
T4n ∩ T′4m+2 = ∅ and T′4m+2 ∩ T′′4n = ∅ for all n,m > 1. Similarly, the classification of
Sarkisov links and Theorem 2.10 imply that T4n ∩ T′′4m = ∅ for all n,m > 1 with only
possible exception n = m = 1.

Finally, let us show that T4∩T′′4 = ∅. Indeed, let ι ∈ T′′4 and consider its regularization
τ on a conic bundle πS : S → P1

R constructed in Section 3.D. Recall that Sτ consists of
two pairs of complex conjugate points and each of these pairs is contained in a τ -invariant
fiber of πS. This property is preserved by all possible G-equivariant Sarkisov links starting
from S, which implies that we cannot conjugate τ to an involution from T4 (as the fibres
containing the G-fixed locus are real by Lemma 3.9).

Remark 8.5. Suppose τ is a Treplain involution acting regularly on a 〈τ〉-conic bundle
S → P1

R with S(R) ≈ S2. Then, if S 99K S ′ is any 〈τ〉-birational map to a 〈τ〉-conic
bundle S ′ → P1, then S ′(R) ≈ S2 which again follows from the classification of Sarkisov
links.

Let us show that dJ1 ∩ I1 6= ∅.

Example 8.6. Let ω : S → P1
R×P1

R be a double cover branched over the smooth genus 1
curve R that is given by (x2

0 +x2
1)(y2

0−y2
1) = x2

1y
2
1, let C be the preimage of the curve R via

ω, let τ be the involutions of the double cover ω, let G = 〈τ〉, where ([x0 : x1], [y0 : y1]) are
coordinates on P1

R × P1
R. Then Pic(S)G ' Z2, F (τ) = C ' R, and R(R) ≈ S1 t S1. Thus

S(R) ≈ T2 and S is R-rational by Theorem 2.1. Let pri : P1
R×P1

R → P1
R be the projection

to the i-th factor. Set π1 = pr1 ◦ω and π2 = pr2 ◦ω. Then π1 and π2 are G-minimal conic
bundles without special fibers. But π1(S(R)) = P1

R, while π2(S(R)) is an interval in P1
R,

which implies that the conic bundle π1 is G-exceptional, but π2 is not G-exceptional. In
particular, τ ∈ dJ1 ∩ I1.

Let us discuss conjugation between involution of a given class. If τ, τ ′ are two involution
in the class B4, they are regularised on smooth del Pezzo surfaces of degree 1 and they are
conjugate if and only if the surfaces are equivariantly isomorphic, see Corollary 4.5. This
allows to distinguish them with linear algebra. Similarly, two involutions in classes G3

and K1 are regularised on smooth del Pezzo surfaces of degree 2 and they are conjugate
if and only if the surfaces are equivariantly isomorphic, see Section 5.

We can also distinguish involutions up to conjugacy in T4n, n > 2. Namely, let τ and
τ ′ be two 0-twisted Trepalin involutions. They can be regularised on the affine surfaces
Y and Y ′, respectively, given by

Y :

{
x2 + y2 +

∏n
i=1(t− εi) = 0,

w2 + (t− λ1)(t− λ2) = 0,
and Y ′ :

{
x2 + y2 +

∏n
i=1(t− ε′i) = 0,

w2 + (t− λ′1)(t− λ′2) = 0,

where τ and τ ′ act by (x, y, z, w) 7→ (x, y, z,−w). If n ≥ 2, then τ and τ ′ are conjugate if
and only if there exist ϕ ∈ PGL2(R) that maps {λ1, λ2} to {λ′1, λ′2} and {ε1, . . . , εn} onto
{ε′1, . . . , ε′n}, as follows from Theorem 2.10. The same argument allows us to distinguish
involutions in T′4n+2 if n > 1 and in T′′4n if n > 2.
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Involutions in dJg are uniquely determined by their fixed curve if g > 2, see Theo-
rem 6.9. Finally, recall that Theorem 7.6 gives an effective way to distinguish conjugacy
classes inside Ig, g > 2, inside Ig, g > 2 and inside I′′g , g > 1. For the remaining classes
T′′4, dJ1, I1 and I′1 we do not know how to decide whether two involution inside a class
are conjugate.

8.C. Proof of the Main Corollary. Let C be a real hyperelliptic curve of genus g > 2
such that the real locus C(R) consists of at least 2 connected components. Let us show
that Bir(P2

R) contains uncountably many non-conjugate 2-twisted Iskovskikh involutions
in the class I′′g that fix a curve isomorphic to C. Observe that C is birational to the curve

in A2
R which is given by w2 = −4f(t) for

f(t) =
2r∏
i=1

(
t− εi

) s∏
i=1

(
t− βi

)(
t− β̄i

)
where ε1 < ε2 < · · · < ε2r are real numbers, β1, . . . , βs are complex non-real numbers,
r > 2, s > 0, and (w, t) are coordinates on A2

R. Note that g = r+s−1. Let a and b be real
numbers such that a < ε1 and b > ε2r, and let Ya,b be the surface in P2

R×A1
R that is given

by x2 + f(t)y2 + (t− a)(t− b)z2 = 0, where ([x : y : z], t) are coordinates on P2
R×A1

R. Let
τa,b be the involution in Aut(Ya,b) given by ([x : y : z], t) 7→ ([x : y : −z], t), let G = 〈τa,b〉,
and let πYa,b : Ya,b → A1

R be G-equivariant morphism given by ([x : y : z], t) 7→ t. Then
Ya,b is smooth, and there exists G-equivariant commutative diagram

Ya,b

πa,b
��

� � // Xa,b

ηa,b
��

A1
R
� � // P1

R

where Xa,b is a real smooth projective surface, A1
R ↪→ P1

R and Ya,b ↪→ Xa,b are open
immersions such that the embedding A1

R ↪→ P1
R is given by t 7→ [t : 1], and ηa,b is a

G-minimal conic bundle such that the fiber η−1
a,b([1 : 0]) = Xa,b \ Ya,b is a smooth conic

without real points.

Remark 8.7. We can construct Xa,b by taking any smooth projective completion of Ya,b
such that the G-action extends to a biregular action, and the rational map to P1

R induced
by πa,b is morphism, and then applying relative G-equivariant Minimal Model program
over P1

R. Alternatively, we can construct Xa,b as a hypersurface in the scroll F(0, r+ s, 1).
Namely, recall from [27] that the real scroll F(0, r + s, 1) can be defined as the quotient
(A3

R \ 0)× (A2
R \ 0)/G2

m for the following G2
m-action:

((
x, y, z

)
,
(
t0, t1

))
7→

((
µx,

µy

λr+s
,
µz

λ

)
,
(
λt0, λt1

))
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where (λ, µ) ∈ G2
m, and ((x, y, z), (t0, t1)) are coordinates on A2

R ×A3
R. Therefore, we can

define the surface Xa,b as a hypersurface in the scroll F(0, r + s, 1) that is given by

x2 + F (t0, t1)y2 + (t0 − at1)(t0 − bt1)z2 = 0,

where F (t0, t1) = td1f( t0
t1

), and ([x : y : z], [t0 : t1]) are bihomogeneous coordinates on

F(0, r + s, 1). Then Ya,b ↪→ Xa,b is given by t1 6= 0, the G-action on Xa,b is given by(
[t0 : t1], [x : y : z]

)
7→
(
[t0 : t1], [x : y : −z]

)
,

and the conic bundle ηa,b : Xa,b → P1
R is given by ([t0 : t1], [x : y : z]) 7→ [t0 : t1].

Note that Xa,b(R) = η−1
a,b([a, b]) and Xa,b(R) is connected, which implies that Xa,b is

R-rational. Let ιa,b be a birational involution in Bir(P2
R) given by τa,b and some birational

map Xa,b 99K P2
R. Then F (ιa,b) ∼= C by Corollary 7.4, so that ιa,b is a 2-twisted Iskovskikh

involution in the class I′′g , because ηa,b has two special singular fibers: the fibers η−1
a,b([a : 1])

and η−1
a,b([b : 1]).

The surface Xa,b has no real point over [1 : 0] thus its real locus is identical to the real
locus of Ya,b and then diffeomorphic to the connected sum of 2r real projective planes.
Indeed, forgetting the action of τa,b, we can contract over R one real (−1)-component of
each of the 2r real singular fibers and obtain a surface whose real locus is diffeomorphic
to the sphere, then Xa,b(R) = #2rRP2.

Proposition 8.8. Let a1, b1, a2, b2 be general real numbers such that a1, a2 < ε1 and
b1, b2 > ε2r. Suppose that g(C) > 2. Then the involutions τa1,b1 and τa2,b2 are not
conjugate in Bir(P2

R).

Proof. The involutions τa1,b1 and τa2,b2 are conjugate if and only if there is a G-
equivariant birational map Xa1,b1 99K Xa2,b2 . Suppose such birational map exists. Since
K2
Xa1,b1

= K2
Xa2,b2

= 4− 2g 6 0, it follows from Theorem 2.10 that there is a G-equivariant

commutative diagram

Xa1,b1

ηa1,b1
��

// Xa2,b2

ηa2,b2
��

P1
R φ

// P1
R

for some φ ∈ PGL2(R). Let

Σ =
{

[ε1 : 1], [ε2 : 1], . . . , [ε2r : 1], [β1 : 1], [β̄1 : 1], . . . , [βs : 1], [β̄s : 1]
}
,

Σ1 =
{

[a1, 1], [b1, 1]
}
, Σ2 =

{
[a2, 1], [b2, 1]

}
.

It follows from the proof of Theorem 2.10 or from the descriptions of two-dimensional
Sarkisov links that the birational map Xa1,b1 99K Xa2,b2 is an isomorphism along singular
fibers of the conic bundles ηa1,b1 and ηa2,b2 . Therefore, we have φ(Σ) = Σ and φ(Σ1) = Σ2.
Since the set Σ consists of at least 6 points in P1

C, it follows from Aut(P1
R,Σ) is a finite

group. So, since φ ∈ Aut(P1
R,Σ), we have finitely many possibilities for the subset φ(Σ1),
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and we may assume that Σ2 is not among these finitely many possibilities, since a2 and
a2 are general by assumption. Then φ(Σ1) 6= Σ2, which is a contradiction. �

Now let us construct an uncountable number of non-conjugate involutions in Bir(P2
R)

that fix no geometrically irrational curve. Let r > 2 and fix real numbers a < ε1 < b <
ε2 < · · · < ε2r. Consider the affine surface U ⊂ A4

R given by{
x2 + y2 + (t− ε1)(t− ε2) · · · (t− ε2r) = 0,

w2 + (t− a)(t− b) = 0,

and the projectivisation S of U . As explained in the construction 3.A, S is R-rational
and there is a conic fibration S → P1

R on S that has 4r > 8 singular fibres and smooth
fibres above a and b. The involution [w : x : y : z] 7→ [−w : x : y : z] of U extends to a
regular involution τa,b on S such that Pic(S)〈τ〉 ' Z2 and F (τa,b) = ∅. In fact, the set of
τa,b-fixed points are the fibres above a and b, and τa,b is a 0-twisted Trepalin involution.

Proposition 8.9. Let a1, a2, b1, b2 be general real numbers such that a1, a2 < ε1 < b1, b2 <
ε2. Then the involutions τa1,b1 and τa2,b2 are not conjugate in Bir(P2

R).

Proof. We can follow the proof of Proposition 8.8 almost word by word. �

Similar uncountable families can be constructed with 1-twisted and 2-twisted Trepalin
involutions.

Appendix A. Quadratic forms

In this appendix, we present some techniques from the theory of quadratic forms.

A.A. Witt’s ring of a field. Let k be a base field of characteristic not equal to two
and V be a vector space of dimension n over k. A quadratic space is a pair (V, q) where
q : V → k is a quadratic form. Given two quadratic spaces (V1, q1) and (V2, q2), one
can form their orthogonal sum V1 ⊥ V2 which is a quadratic space (V1 ⊕ V2, q1 ⊥ q2)
where (q1 ⊥ q2)(v1, v2) = q1(v1) + q2(v2). Further, we have an operation of tensor product
(V1 ⊗ V2, q1 ⊗ q2) of these two quadratic spaces, where q1 ⊗ q2 is defined on elementary
tensors by (q1 ⊗ q2)(v1 ⊗ v2) = q1(v1)q2(v2). Since every quadratic form can be brought
to the diagonal form a1x

2
1 + a2x

2
2 . . . + anx

2
n, ai ∈ k∗, we shall denote quadratic forms

〈a1, a2, . . . , an〉; the latter is equal to 〈a1〉 ⊥ 〈a2〉 ⊥ . . . ⊥ 〈an〉.
Let M(k) be the set of all isometry classes of non-singular quadratic forms over k.

The operations of orthogonal sum ⊥ and tensor product ⊗ make M(k) into commutative
semiring: note that no non-zero element of M(k) has an additive inverse. However,
Witt’s Cancellation Theorem [24, I.4.2] states that M(k) is a cancellation monoid, i.e.
q ⊥ q1

∼= q ⊥ q2 always implies q1
∼= q2. This allows to embed M(k) into a group via

the standard Grothendieck construction. Namely, define a relation on M(k) ×M(k) by
setting

(q1, q2) ∼ (q′1, q
′
2) if and only if q1 ⊥ q′2 = q′1 ⊥ q2.
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The cancellation law implies that ∼ is an equivalence relation and there is a well-defined
addition on the set of equivalence classes

[(q1, q2)] + [(q′1, q
′
2)] = [(q1 + q′1, q2 + q′2)]

which makes (M(k) ×M(k)/ ∼) into a commutative ring Ŵ(k) called the Grothendieck-

Witt ring of quadratic forms over k. The map ι : M(k) → Ŵ(k), ι(q) = (q, 0), is an

injection, so we can view M(k) as a subset of Ŵ(k). We can write (q1, q2) = ι(q1)−ι(q2) =

q1− q2, hence saying that q1 and q2 are equal as elements of Ŵ(k) is equivalent to saying
that q1 and q2 are equivalent as quadratic forms.

The quadratic form h = 〈1,−1〉 is called the hyperbolic plane, and an orthogonal sum
of hyperbolic planes is called a hyperbolic space. It is not difficult to see that the set of

all hyperbolic spaces and their additive inverses constitutes an ideal in Ŵ(k) denoted Zh.

The quotient ring W(k) = Ŵ(k)/Zh is called the Witt ring of k.

Remark A.1. It is easy to see that the elements of W(k) are in one-to-one correspondence
with the isometry classes of all anisotropic forms over k. For example, over k = R there
are only two classes of anisotropic forms of a given dimension n > 1, namely n〈1〉 and
n〈−1〉. In particular, the map

(A.2) ψ : W(R)→ Z, q 7→

{
n, if q ∼= n〈1〉,
−n, if q ∼= n〈−1〉

is an isomorphism.

Two n-ary quadratic forms q1 and q2 on V are called equivalent if there exists A ∈ GL(V )
such that q1(v) = q2(Av) for all v ∈ V . Now we can formulate the following classical result
which is due to Witt (see e.g. [24, II.1.4] for a modern exposition).

Theorem A.3. Two non-degenerate quadratic forms over a field k are equivalent if and
only if they have the same dimension and equal classes in W(k).

Let (F, ν) be a discretely valuated field and A = {x ∈ F : ν(x) > 0} be the correspond-
ing valuation ring (one sets ν(0) =∞, so 0 ∈ A). This is a local ring with maximal ideal
m = {x ∈ F : ν(x) > 1} generated by any element π with ν(π) = 1; such π is called
a uniformizer of A. The field F = A/m is called the residue class field of A. Recall that
every y ∈ F∗ can be written uniquely in the form y = uπν(y) where π is a fixed uniformizer
and u belongs to the ring of units U(A) = {x ∈ F∗ : ν(x) = 0}. This implies that every
quadratic form over F can be written as

(A.4) q = q1 ⊥ 〈π〉q2, where q1 = 〈u1, . . . , ur〉, q2 = 〈ur+1, . . . , un〉, ui ∈ U(A).

Now Springer’s theorem [24, VI.1.4] implies that the classes of q1 = 〈u1, . . . , ur〉 and
q2 = 〈ur+1, . . . , un〉 are uniquely determined in W(F) for a given form q. They are called
the first and second residue forms of q, respectively.
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A.B. Quadratic forms over R(t). In section 7, we will need to find out when two
quadratic forms in three variables over R(t) are G-equivariantly equivalent. So, let us
start with the following easy

Lemma A.5. Suppose that G act on R(t)3 by (x, y, z) 7→ (x, y,−z). Let
A,B,C,D,E, F ∈ R[t] be polynomials with no multiple roots, such that A,B,E have
no common divisors and C,D, F have no common divisors. Then the forms 〈A,B,E〉 and
〈C,D, F 〉 are G-equivariantly equivalent if and only if 〈A,B〉 and 〈C,D〉 are equivalent
over R(t) and F = µE for some µ > 0.

Proof. If the forms 〈A,B,E〉 and 〈C,D, F 〉 are G-equivariantly equivalent, then the equiv-
alence is given by an automorphism of R(t)3 of the form φ : (x, y, z) 7→ (ax+by, cx+dy, λz)
with a, b, c, d, λ ∈ R(t). Then 〈A,B〉 and 〈C,D〉 are equivalent and F = λ2E. Since E
and F are both polynomials without multiple roots, it follows that λ ∈ R∗.

Suppose that 〈A,B〉 and 〈C,D〉 are equivalent over R(t) and F = µE for some µ > 0.
If the map (x, y) 7→ (ax + by, cx + dy), a, b, c, d ∈ R(t), induces the equivalence between
〈A,B〉 and 〈C,D〉, then the G-equivariant isomorphism (x, y, z) 7→ (ax+by, cx+dy,

√
µz)

induces an equivalence between 〈A,B,E〉 and 〈C,D, F 〉. �

We now provide necessary and sufficient conditions for 〈A,B〉 and 〈C,D〉 to be equiv-
alent over R(t) by applying the above described construction to the particular case
F = R(t). Let {π} be the set of monic irreducible polynomials in R[t]. Recall that
each maximal ideal (π) of R[t] defines a valuation on the field R(t) given by |f |π = c−νπ(f)

with c ∈ R>1 and νπ(f) being the power of (π) dividing (f). Note that different choice
of c gives an equivalent valuation. Denote by R(t)π the (π)-adic completion of R(t) with
respect to | · |π. Define ∂π to be the composition

W(R(t))→W(R(t)π)→W(R(t)π),

where the second map is the second residue homomorphism with π as the uniformizer.
Then there is a Milnor’s exact sequence [24, IX.3.1]

(A.6) 0 −→W(R)
ι−→W(R(t))

⊕∂π−→
⊕
{π}

W
(
R(t)π

)
−→ 0

Lemma A.7. One has R(t)π ∼= R[t]/(π).

Proof. The valuation ring of R(t)π is R[t]π, the π-adic completion of R[t]. Its unique
maximal ideal is (π)π, the π-adic completion of (π). Then we have

R(t)π ∼= R[t]π/(π)π ∼= R[t]/(π),

where the last isomorphism follows from e.g. [1, 10.15]. �

In what follows let u be the class of u ∈ R[t] in R[t]/(π). We can rewrite Milnor’s
sequence in the form

(A.8) 0 −→W(R)
ι−→W(R(t))

⊕∂π−→
⊕
{π}

W (R[t]/(π)) −→ 0
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and the homomorphism ∂π is explicitly given on 1-forms by

(A.9) ∂π〈v〉 =

{
0, if π does not divide v,

〈v/π〉, otherwise.

If t − ε divides Q ∈ R[t] we set Qε = Q/(t − ε) for brevity. The following proposition
was explained to us by A. Merkurjev.

Proposition A.10. Let A,B,C,D ∈ R[t] be polynomials with no multiple roots. Two
quadratic forms 〈A,B〉 and 〈C,D〉 are equivalent (with respect to GL2(R(t))-action) if
and only if the following three conditions hold:

(1) ABCD is a square in R(t) (equivalently, AB = CD in R(t)/(R(t)∗)2).
(2) For every real root ε of A the following conditions hold

(2.a) if A(ε) = 0, B(ε) 6= 0 then Aε(ε)Cε(ε) > 0 when C(ε) = 0 and Aε(ε)Dε(ε) > 0
when D(ε) = 0.

(2.b) if A(ε) = B(ε) = 0 and C(ε), D(ε) 6= 0 then Aε(ε)Bε(ε) < 0.
(2.c) if A(ε) = B(ε) = C(ε) = D(ε) = 0 then either Aε(ε)Bε(ε) < 0 and

Cε(ε)Dε(ε) < 0, or all numbers Aε(ε), Bε(ε), Cε(ε), Dε(ε) have the same sign.
(3) The degrees of A, B, C, D are all even; or they are all odd and, moreover,

all leading coefficients have the same sign or exactly one leading coefficient of
A, B and C, D is negative; or exactly one of A,B and one of C,D has odd
degree and the leading coefficient of the odd-degree polynomials have the same
sign; or deg(A), deg(B) are odd with leading coefficients of opposite sign and
deg(C), deg(D) are even (or the other way around).

Proof. By Witt’s theorem A.3, we need to check that our two forms have the same class in
the Witt ring W(R(t)). For this we are going to use Milnor’s exact sequence (A.8). First
let us compare the images of our forms under each ∂π. If deg π = 2 then R[t]/(π) ∼= C
and W(C) is isomorphic to Z/2Z via the “parity” homomorphism which takes a form q
to 0 if dim q is even, and to 1 if dim q is odd. Since ABCD is a square in R(t), the images
of 〈A,B〉 and 〈C,D〉 under ∂π are the same.

Now let π = t− ε, where ε ∈ R. Denote by ϑ the isomorphism

ϑ : R[t]/(t− ε) ∼−→R, u 7→ u(ε).

We have the following cases.

(1) A(ε) = 0, B(ε) 6= 0. Then by (A.9) one has ∂π〈B〉 = 0. Since ABCD is a square
and A,B,C,D have no multiple factors, exactly one of C and D is divisible by
t − ε. Without loss of generality, assume C(ε) = 0, D(ε) 6= 0, so ∂π〈D〉 = 0. We
see that the class of ∂π〈A〉 = 〈Aε〉 in W(R[t]/π) ∼= W(R) is equal to the class of
∂π〈C〉 = 〈Cε〉 if and only if ϑ(Aε) = Aε(ε) and ϑ(Cε) = Cε(ε) have the same sign
(see Remark A.1).

(2) A(ε) = B(ε) = 0, but C(ε) and D(ε) do not equal 0. Then ∂π〈C〉 = ∂π〈D〉 = 0
and we must have 〈Aε〉 = −〈Bε〉 in W(R[t]/(π)), which exactly means that Aε(ε)
and Bε(ε) are of different signs.
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(3) A(ε) = B(ε) = C(ε) = D(ε) = 0. We must have ∂π〈A〉+ ∂π〈B〉 = ∂π〈C〉+ ∂π〈D〉
which, by definition of ∂π, is equivalent to the following equality between quadratic
1-forms over R[t]/(π): 〈Aε〉+〈Bε〉 = 〈Cε〉+〈Dε〉. This is equivalent, after applying
the isomorphism ϑ : R[t]/(π)→ R, to the equality

〈Aε(ε)〉+ 〈Bε(ε)〉 = 〈Cε(ε)〉+ 〈Dε(ε)〉.
Let ψ be the isomorphism (A.2) W(R) → Z. Now for any z ∈
{Aε(ε), Bε(ε), Cε(ε), Dε(ε)} we have ψ(z) = 1 if z > 0 and ψ(z) = −1 if z < 0.
This translates in the condition that either Aε(ε)Bε(ε) < 0 and Cε(ε)Dε(ε) < 0,
or all the numbers Aε(ε), Bε(ε), Cε(ε), Dε(ε) have the same sign.

Now the map ι in the exact sequence (A.8) admits a splitting ∞ which is defined on
1-forms as follows: if q = 〈h(t)〉 and h has degree d and the leading coefficient λ then
∞(q) = 0 for d even and ∞(q) = 〈λ〉 for d odd, see [24, IX.4.5]. Note that AB = CD
in R(t)/(R(t)∗)2 implies that deg(AB) and deg(CD) have the same parity. If they are
both odd then exactly one element of each pair A,B and C,D has odd degree, and then
∞〈A,B〉 = 〈±1〉 = ∞〈C,D〉 if and only if the leading coefficients of the odd-degree
polynomials have the same sign. If they are both even, then we easily see that the
degrees of A,B,C,D must have the same parity or deg(A), deg(B) are odd with leading
coefficients of opposite sign and deg(C), deg(D) are even (or the other way around). �

Remark A.11. A slightly different approach to Proposition A.10 was suggested to us
by A. Vishik. Namely, we have the following statement (again, probably due to Witt):
〈A,B〉 ∼= 〈C,D〉 if and only if the following two conditions hold:

(1) The classes of discriminants AB and CD in k∗/(k∗)2 coincide;
(2) 〈A,B〉 represents C.

The necessity is easy, so let us prove the sufficiency. The diagonalization theorem for
quadratic forms implies that, given a non-degenerate quadratic space (V, q) and any
anisotropic vector v ∈ V there exists an orthogonal basis (v, e2, . . . , en). Thus if q repre-
sents θ ∈ k∗ then q ∼= θx2

1 +α2x
2
2 + . . .+αnx

2
n (this observation implies in particular that

if n = 2 then q ∼= 〈θ, θ · disc q〉, a fact that we shall use below). In our situation we have
〈A,B〉 ∼= 〈C,E〉, but then condition (1) implies E = D.

Now 〈A,B〉 represents C if and only if q = 〈A,B,−C〉 is isotropic. Indeed, the latter
condition is equivalent to h being a subform of q. But h ∼= 〈C,−C〉 (by the observation
from above) and therefore q is isotropic if and only if 〈C,−C〉 is its subform, which is
equivalent to 〈C〉 being a subform of 〈A,B〉 by Witt’s Cancellation Theorem [24, I.4.2].

Set E = A/C, F = B/C. The form q is then proportional to the form 〈1,−E,−F 〉.
Consider Milnor’s K-theory KM

∗ (k) =
⊕

n>0 (K1(k))⊗n /J , where K1(k) is the group k∗
written additively (with elements denoted by {a}, a ∈ k∗) and J is the ideal generated by
all elements {a}⊗ {1− a}. Let a1, . . . , an ∈ k∗. The class of a1⊗ . . .⊗ an in KM

∗ is called
a symbol {a1, . . . , an}. It is well known that the following statements are equivalent:

(1) The Pfister form 〈〈a1, . . . , an〉〉 = 〈1,−a1〉 ⊗ . . .⊗ 〈1,−an〉 is isotropic.
(2) The quadratic form 〈〈a1, . . . , an−1〉〉+ 〈−an〉 is isotropic.
(3) The symbol {a1, . . . , an} is zero in KM

n (k).
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We conclude that q is isotropic if and only if the symbol {E,F} is zero in KM
2 (k). Now

let k = R(t). There is a short exact sequence similar to (A.8)

0 −→ KM
n (R) −→ KM

n (R(t)) −→
⊕
{π}

KM
n−1(R[t]/(π)) −→ 0

and an analysis similar to the one of Proposition A.10 applies. We leave the details to an
interested reader.
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