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Abstract. We show that the real Cremona group of the plane is a non-
trivial amalgam of two groups amalgamated along their intersection and give
an alternative proof of its abelianisation.

1. Introduction

The plane Cremona group is the group Birk(P2) of birational transformations of
P2 defined over a field k. For algebraically closed fields k, the Noether-Castelnuovo
theorem [5] shows that Birk(P2) is generated by Autk(P2) and the quadratic map
[x : y : z] 799K [yz : xz : xy]. It implies that the normal subgroup generated by
Autk(P2) is equal to Birk(P2). Furthermore, [4, Appendix by Cornulier] shows
that Birk(P2) is not isomorphic to a non-trivial amalgam of two groups. However, it
is isomorphic to a non-trivial amalgam modulo one simple relation [1, 10, 8], and it
is isomorphic to a generalised amalgamated product of three groups, amalgamated
along all pairwise intersections [16]. For k = R, the group BirR(P2) is generated by
AutR(P2) and the two subgroups

J∗ = {f ∈ BirR(P2) | f preserves the pencil of lines through [0 : 0 : 1] }
J◦ = {f ∈ BirR(P2) | f preserves the pencil of conics through p1, p̄1, p2, p̄2 }

where p1 = [1 : i : 0], p2 = [0 : 1 : i] [3, Theorem 1.1]. Over C, the analogon of
J◦ is conjugate to J∗ since a pencil of conics through four points in P2 in general
position can be sent over C onto a pencil of lines through one point.

We define G◦ ⊂ BirR(P2) to be the subgroup generated by AutR(P2) and J◦,
and by G∗ ⊂ BirR(P2) the subgroup generated by AutR(P2) and J∗. Then BirR(P2)
is generated by G∗ ∪ G◦, and the intersection G∗ ∩ G◦ contains the subgroup H
generated by AutR(P2) and the involution [x : y : z] 799K [xz : yz : x2 + y2], which
is contained J◦ ∩ J∗.

Theorem 1.1. We have G∗∩G◦ = H, which is a proper subgroup of G◦ and G∗ and

BirR(P2) ' G◦˚
H
G∗.

Moreover, both G∗ and G◦ have uncountable index in BirR(P2).

The action of BirR(P2) on the Bass-Serre tree associated to the amalgamated
product yields the following:
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Corollary 1.2. Any of algebraic subgroup of BirR(P2) is conjugate to a subgroup
of G∗ or of G◦.

For the finite subgroups of odd order Corollary 1.2 can also be verified by check-
ing their classification in [17]. An earlier version of this article used an explicit
presentation of BirR(P2) and of G◦ in terms of generators and generating relations,
the first of which is proven in [18] and the second was proven analogously in the
earlier version of this article. The present version does not use either presentation.
Instead, we look at the groupoid of birational maps between rational real Mori fibre
spaces of dimension 2. It contains BirR(P2) as subgroupoid, is generated by Sarkisov
links and isomorphisms and the elementary relations are a set of generating rela-
tions [11], see also Theorem 2.5. This information is encoded in a square complex
on which BirR(P2) acts [11], see also § 2. This allows us to moreover provide a new
proof of the abelianisation theorem of BirR(P2) given in [18, Theorem 1.1(1)&(3)]:

Theorem 1.3. There is a surjective homomorphism of groups

Φ: BirR(P2) −→
⊕
(0,1]

Z/2Z

such that its restriction to J◦ is surjective and G∗ ⊂ ker(Φ) = [BirR(P2),BirR(P2)],
where the right hand side is also equal to the normal subgroup generated by AutR(P2).

The proof of the main theorems rely on the description from [11] of elementary
relations among so-called Sarkisov links, into which any real birational map of P2

decomposes [9]. In higher dimension over C, the decomposition result is due to [7]
(and [6] for dimension 3), and the description of elementary relations is generalised
in [2], where the authors moreover deduce that for n ≥ 3, the group Bir(PnC) is a
non-trivial amalgamated product of uncountably many factors along their common
intersection.

Acknowledgement: I would like thank Anne Lonjou for asking me whether the
real plane Cremona group is isomorphic to a generalised amalgamated product of
several groups, and the interesting discussions that followed. I would also like to
thank Stéphane Lamy for discussions on the square complex, and Jérémy Blanc,
Yves de Cornulier for helpful remarks, questions and discussions, and the referee
for the very useful comments and suggestions.

2. A square complex associated to the Cremona group

In this section we recall the square complex constructed in [11].
By a surface S, we mean a smooth projective surface defined over R, and by

SC the same surface but defined over C. We define the Néron-Severi space N1(SC)
as the space of R-divisors N1(SC) := Div(SC) ⊗Z R/ ≡, where ≡ is the numerical
equivalence of divisors. The Galois group Gal(C/R) ' Z/2Z acts on N1(SC) and
we denote by N1(S) the subspace of the invariant classes. Since we only consider
surfaces with S(R) 6= ∅ and C[SC]∗ = C∗, N1(S) is also the space of classes of
divisors defined over R (see for instance [14, Lemma 6.3(iii)]). The dimension of
N1(S) is called Picard rank of S and is denoted by ρ(S). We can identifyN1(S) with
the space N1(S) of 1-cycles defined over R. For a surjective morphism π : S −→ B
defined over R, we denote by N1(S/B) ⊂ N1(S) the subspace generated by curves
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contracted by π, and by N1(S/B) the quotient of N1(S) by the orthogonal of
N1(S/B). We call ρ(S/B) = dimN1(S/B) the relative Picard rank of S over B.

If not stated otherwise, all morphisms are defined over R, while curves and points
contained in a real surface will be geometric curves and points, i.e. they are not
necessarily defined over R, but its Gal(C/R)-orbit is.

2.1. Rank r fibrations and a square complex.

Definition 2.1. Let S be a smooth projective real surface, B a point or a curve
and r ≥ 1 an integer. We say that a surjective morphism π : S → B with connected
fibres is a rank r fibration if ρ(S/B) = r and the anticanonical divisor −KS is
π-ample.

The last condition means that for any curve C contracted to a point by π, we
have KS · C < 0. The condition on the Picard number is that ρ(S) = r if B is a
point, and ρ(S) = r + 1 if B = P1. We may write S/B instead of π : S −→ B.

An isomorphism between two fibrations S/B and S′/B′ is an isomorphism S
'→

S′ such that there exists an isomorphism on the bases that makes the following
diagram commute:

S S′

B B′

'

π π′

'

In particular, S/B and S′/B′ are fibrations of the same rank.
The definition of a rank r fibration puts together several notions. If B is a point,

then S is a real del Pezzo surface of Picard rank r. If B is a curve, then S is a conic
bundle of relative Picard rank r: a general fiber is isomorphic to a smooth plane real
conic, and any singular fiber is the union of two (−1)-curves secant at one point.
Remark also that being a rank 1 fibration is equivalent to being a (smooth) Mori
fibre space of dimension 2.

Lemma 2.2. Let S/B be a rank r fibration and assume that S is rational.
• If r = 1, then S/B is isomorphic to one of the following:

(1) P2/pt,
(2) Q = {[w : x : y : z] ∈ P3 | w2 = x2 + y2 + z2}/pt,
(3) F0 = P1 × P1/P1 (the map is the second or first projection),
(4) Fn = {([x : y : z], [u : v]) ∈ P2 × P1 | yvn = zun}/P1, n > 0,
(5) CB6 = {([w : x : y : z], [u : v]) ∈ Q× P1 | wv = zu}/P1,

• If r = 2, then S/B is isomorphic to F0/pt or to the blow-up of a rank 1
fibration in a real point of a pair of non-real conjugate points.

Proof. The first statement is [3, Proposition 2.15]. Suppose that S/B is a rank
2 fibration. As ρ(S/B) = 2, we can run the Gal(C/R)-invariant two rays-game
over B; there exist exactly two morphisms πi : S −→ Si with connected fibres and
ρ(S/Si) = 1, i = 1, 2, such that π factors through each πi.

S

S1 S2

B

π1 π2

π
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If S1 and S2 are both curves, then S1 ' S2 ' P1 as S is rational, and S/S1

and S/S2 are rank 1 fibrations. From the classification of rank 1 fibrations, it
follows that S/B ' F0/pt. Else, at least one of the Si is a surface, say S1, and
π1 is a birational morphism. If C is a curve contracted by S1/B, then both the
exceptional divisor of π1 and the strict transform C̃ of C are contracted by π,
hence KS1

· C = KS · π∗(C) < 0. In particular, S1/B is a rank 1 fibration. �

For a rational surface S, we call marking on a rank r fibration S/B a choice of
a birational map ϕ : S 99K P2. We say that two marked fibrations ϕ : S/B 99K P2

and ϕ′ : S′/B′ 99K P2 are equivalent if ϕ′−1 ◦ ϕ : S/B → S′/B′ is an isomorphism
of fibrations. We denote by (S/B,ϕ) an equivalence class under this relation.

If S′/B′ and S/B are marked fibrations of respective rank r′ and r, we say
that S′/B′ factorizes through S/B if the birational map S′ → S induced by the
markings is a morphism, and moreover there exists a (uniquely defined) morphism
B → B′ such that the following diagram commutes:

S′ B′

S B

π′

π

In fact if B′ = pt the last condition is empty, and if B′ ' P1 it means that S′ → S
is a morphism of fibration over a common basis P1. Note that r′ ≥ r.

We define a 2-dimensional complex X as follows. Vertices are equivalence classes
of marked rank r fibrations, with 3 ≥ r ≥ 1. We put an oriented edge from
(S′/B′, ϕ′) to (S/B,ϕ) if S′/B′ factorizes through S/B. If r′ > r are the respec-
tive ranks of S′/B′ and S/B, we say that the edge has type r′, r. For each triplets
of pairwise linked vertices (S′′/B′′, ϕ′′), (S′/B′, ϕ′), (S/B,ϕ) where S′′/B′′ (resp.
S′/B′, S/B) is a rank 3 (resp. 2, 1) fibration, we glue a triangle. In this way we
obtain a 2-dimensional simplicial complex X .

Lemma 2.3. [11, Lemma 2.3] For each edge in X of type 3, 1, there exist exactly
two triangles that admit this edge as a side.

By gluing all the pairs of triangles along edges of type 3,1, and keeping only
edges of types 3,2 and 2,1, we obtain a square complex that we still denote X .
When drawing subcomplexes of X we will often drop part of the information which
is clear by context, about the markings, the equivalence classes and/or the fibration.
For instance S/B must be understood as (S/B,ϕ) for an implicit marking ϕ and
P2 as P2/pt.

2.2. Sarkisov links and elementary relations. In this section we recall from
[11] that the complex X encodes the notion of Sarkisov links (or links for short),
and of elementary relation between them.

A Sarkisov link f : S 99K S′ between two rank 1 fibrations S/B and S′/B′ is one
of the following birational maps:
• Link of type I: B = pt, B′ = P1 and f : S 99K S′ is a blow-up of a real point

or a pair of non-real conjugate points.
• Link of type II: B = B′ and there exist two blow-ups of a real point or non-real

conjugate points π : S′′ −→ S and π′ : S′′ −→ S′ over B such that f = π′ ◦ π−1.
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S′

S B′

pt

f

S′′

S S′

B

π π′

f

S′

S B′

pt

f

S S

B B′

pt

f

Figure 1. From left to right: Sarkisov link f of type I, II, III and IV.

• A link of type III is the inverse of a link of type I, i.e. B = P1, B′ = pt and
f : S −→ S′ is the contraction of a real (−1)-curve or a pair of non-real conjugate
(−1)-curves.
• Link of type IV: S = S′ and B,B′ curves and f is the identity on S. If S

is rational, then, by Lemma 2.2, S ' F0, B ' B′ ' P1 and S/B, S/B′ are the
projections on the first and second factor.

Let (S/B,ϕ), (S′/B′, ϕ′) be two marked rank 1 fibrations. The induced birational
map S 99K S′ is a Sarkisov link if and only if there exists a marked rank 2 fibration
S′′/B′′ that factorizes through both S/B and S′/B′.

S′′/B′′

S/B S′/B′

Indeed, for links of type I and III we take S′′/B′′ = S′/pt, for links of type II we
take S′′/B′′ = S′′/B, and for links of type IV, we take S′′/B′′ = S/pt. Equivalently,
the vertices corresponding to S/B and S′/B′ are at distance 2 in the complex X ,
with middle vertex S′′/B′′.

A path of links from a rank 1 fibration (S/B,ϕ) to another rank fibration
(S′/B′, ϕ′) is a path in X from (S/B,ϕ) to (S′/B′, ϕ′) that passes only through
edges of type 1, 2.

Proposition 2.4. [11, Proposition 2.6] Let (S′/B, ϕ) be a marked rank 3 fibra-
tion. Then there exist finitely many squares in X with S′ as a corner, and the
union of these squares is a subcomplex of X homeomorphic to a disk with center
corresponding to S′.

In the situation of Proposition 2.4, by going around the boundary of the disc we
obtain a path of Sarkisov links whose composition is an automorphism. We say that
this path is an elementary relation between links, coming from the rank 3 fibration
S′/B. More generally, any composition of links that corresponds to a loop in the
complex X is called a relation between Sarkisov links.

Theorem 2.5. [11, Proposition 3.14, Proposition 3.15]
(1) Any birational map between rank 1 fibrations is a composition of links and

isomorphisms. In particular the complex X is connected.
(2) Any relation between links is generated by elementary relations, and in par-

ticular X is simply connected.
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The first part of Theorem 2.5 can also be found in [9, Theorem 2.5]. In fact, a
relative version can be extracted from the classification of links in [9, Theorem 2.6].

Proposition 2.6. Let B be a curve and S/B and S′/B two rank 1 fibrations. Any
birational map f : S 99K S′ over B is a composition of Sarkisov links of type II over
B. In particular:

(1) Let η : P2 99K F1 be blow-up of [0 : 0 : 1]. Then any element of ηJ∗η−1

is a composition of isomorphisms and links of type II between Hirzebruch
surfaces.

(2) Let η := η2η1 : P2 99K CB6 where η1 : P2 99K Q is the link of type II blowing
up [1 : i : 0], [1 : −i : 0] and contracting the line passing through them, and
η2 : Q 99K CB6 is the blow-up of η1([0 : 1 : i]) and η1([0 : 1 : −i]). Then
any element of ηJ◦η−1 is a composition isomorphisms of CB6 and links
CB6/P1 99K CB6/P1 of type II.

2.3. Elementary discs. We call the disc with center a rank 3 fibration from Propo-
sition 2.4 an elementary disc. In this section, we classify them and therewith obtain
an explicit list of elementary relations among rank 1 fibrations.

Lemma 2.7. Any edge of X is contained in a square. In particular, X is the union
of elementary discs.

Proof. Any edge e of X contains a vertex S/B that is a rank 2 fibration.
Suppose that e is of type 2, 3. From the two rays-game on S we obtain an edge

in X of type 1, 2 attached to S/B. This yields an edge of type 1, 3, which, by
Lemma 2.3, is contained in a square.

Suppose that e is of type 1, 2. We now produce an edge of type 2, 3 attached to
S/B, which will imply that e is contained in a square as above by Lemma 2.3. If S
is a del Pezzo surface, then 2 ≤ ρ(S) ≤ 3 and so by Lemma 2.2, S is the blow-up of
P2 or Q in at most four points and hence (KS)2 ≥ 4. Therefore, the blow-up of S
in a real point or a pair of non-real conjugate points in general position yields a del
Pezzo surface S′ and S′/B is a rank 3 fibration. If S is not a del Pezzo surface, it is
the blow-up of a Hirzebruch surface Fn, n 6= 0, 1. The blow-up of S in a real point
or a pair of non-real conjugate points not contained in the same fibre nor in any
singular fibre of S/P1 yields a rank 3 fibration S′/P1. In any case, we have obtained
an edge of type 2, 3 attached to S/B.

By Proposition 2.4, any square is contained in an elementary disc, so X is the
union of elementary discs. �

Lemma 2.7 is not true in general for an arbitrary perfect field k. Indeed, if k has
an extension of degree 8, then a Bertini involution whose set of base-points consists
of one single Galois-orbit is a link of type II whose corresponding two edges in X
are not contained in any square [11, Lemma 4.3].

We now give some examples of elementary discs in X and will then prove that our
list is exhaustive. In what follows, Xd is a del Pezzo surface of degree d = (KXd

)2.

Example 2.8. We now describe a disc of type 1, pictured in Figure 2 Pick two
general real points p, q ∈ Q. The surface QC is isomorphic to P1

C × P1
C and in Q,

the two fibres through p (resp. q) are a pair of non-real conjugate curves, whose
union we denote by by Cp ⊂ Q (resp. Cq ⊂ Q). Let X7 −→ Q be the blow-up of
p. Blowing up q on X7 yields morphisms X6 −→ X7. We can contract the strict
transform C̃p of Cp on X7 onto a pair of non-real conjugate points in P2. By abuse
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of notation, we also denote by C̃p the strict transform on X6. On X6, C̃p and the
exceptional divisor Eq of q are disjoint, and contracting first C̃p and then Eq yields
the square on the lower left. Analogously, we obtain the square on the right. Blowing
up p and q in different order yields the middle square. The two fibrations F1/P1 lift
to two fibrations X6/P1. This yields the upper two squares. The curves Eq, Ep and
the geometric components of C̃p and C̃q are the only (−1)-curves on X6. We have
obtained a disc around the the rank 3 fibration X6/pt.

F1/P1 X6/P1 F1/P1

F1/pt X6/pt F1/pt

X7/pt X7/pt

P2/pt Q/pt P2/pt

C̃p C̃q

q

C̃p C̃q

q p
p

C̃p

p

C̃q

q

Figure 2. A disc of type 1.

Remark 2.9. The surface CB6 is obtained from Q by blowing up the pair of
non-real conjugate points [0 : 1 : i : 0], [0 : 1 : −i : 0]. It is a del Pezzo surface
of degree 6 and hence has six (−1)-curves. The conic bundle CB6/P1 has exactly
two singular fibres, each of which has exactly two components, which are conjugate
(−1)-curves. The remaining two (−1)-curves is a pair of non-real conjugate sections
of CB6/P1; they are the exceptional divisors of the morphism CB6 −→ Q blowing
up [0 : 1 : i : 0], [0 : 1 : −i : 0].
• The surface CB5 obtained by blowing up one real point on CB6 not contained

in any (−1)-curve on CB6 is a del Pezzo surface of degree 5 and inherits the conic
bundle structure from CB6. It can also be obtained by blowing up two pairs of
non-real conjugate points on P2 in general position: the surface CB5 contains ten
(−1)-curves, namely the exceptional divisors of the four blown-up points and the
strict transform of the lines passing through any two of them. The latter form two
pairs of non-real conjugate lines and two real lines. Contracting one of the real
(−1)-curves yields a birational morphism CB5/P1 −→ CB6/P1.
• The surface CB4 obtained by blowing up a pair of non-real conjugate points

r, r̄ in CB6 not contained in any (−1)-curve, is a del Pezzo surface of degree 4. It
can be obtained by blowing up P2 in three pairs of non-real conjugate points p, p̄,
q, q̄, r, r̄, not all contained on one conic, composed by the contraction the strict
transform of the line Lpp̄ passing through p, p̄. The (−1)-curves on CB4 form eight
pairs of non-real conjugate curves. Among them, the only curves which are disjoint
from their conjugate are the images of the exceptional divisors of q, q̄, r, r̄ and the
strict transform of the conics passing through p, p̄ and three of q, q̄, r, r̄.
• The surface obtained by blowing up two real points r, s in CB6 has a similar

discription to CB4, and can be obtained by blowing up points p, p̄, q, q̄, r, s on P2, no
three collinear, and contracting the line through p, p̄. Its sixteen (−1)-curves form
seven pairs of conjugate curves and two real curves, the latter two being the strict
transforms of the conics through p, p̄, q, q̄, r and p, p̄, q, q̄, s.

Example 2.10. We describe a disc of type 2, pictured in Figure 3. Pick two real
points p and q on the conic bundle CB6/P1 not contained in the same fibre. Let
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S −→ CB6 be the blow-up of p and S′ −→ CB6 the blow-up of q. Blowing up q on
S and p on S′ yields morphisms X −→ S and X −→ S′ and the lower square. The
rank 3 fibration X/P1 has exactly four singular fibres: the pre-image of the fibre fp
containing p, the pre-iamge of the fibre fq containing q, and the pre-image of the two
singular fibres of CB6/P1. We can contract the strict transforms f̃p of fp and f̃q of
fq onto real points over P1. Contracting both yields a morphism X/P1 −→ CB6/P1

and the remaining squares. By Remark 2.9, there are no other contractions from X,
and so we have obtained a disc around the vertex X/P1. An analogous construction
can be made for two pairs of non-real conjugate points p, p̄ and q, q̄, where no two of
p, p̄, q, q̄ are on the same fibre, and for a real point p and a pair of non-real conjugate
points q, q̄, no two of which are on the same fibre.

CB6/P1

S′′/P1 S′′′/P1

CB6/P1 X/P1 CB6/P1

S/P1 S′/P1

CB6/P1

f̃q

q

f̃p

pf̃qf̃p

q

p

p

f̃p

q

f̃q

Figure 3. A disc of type 2, where p (resp. q) denotes a real point
or a pair of non-real conjugate points.

Example 2.11. We describe a disc of type 3, pictured in Figure 4. Pick two pairs
of non-real conjugate points p, p̄ and q, q̄ in P2 that are not collinear. Let X7 −→ P2

be the blow-up of p, p̄. The blow-up of q, q̄ on X7 yields a morphism CB5 −→ X7

(see Remark 2.9). Blowing up p, p̄ and q, q̄ in different order yields the lower middle
square. On CB5, the strict transform L̃p of the line Lp passing through p, p̄ is a real
(−1)-curve and disjoint from the exceptional divisor Eq of q. Contracting L̃p and
Eq yields a birational morphism CB5 −→ Q. The order of the contractions yields
the lower left square. The contraction of L̃p preserves the conic bundle structure
in CB5, which yields the left upper square. We repeat the same construction with
q instead of p and obtain the right side of the disc. The remaining complex (−1)-
curves on CB5 are the strict transforms of the lines passing through one of each pair
p, p̄ and q, q̄. They form conjugate pairs of intersecting curves and hence cannot be
contracted. We have thus obtained a disc around the the rank 3 fibration CB5/pt.

Example 2.12. We describe a disc of type 4, pictured in Figure 5. Pick two pairs
of non-real conjugate points p, p̄ and q, q̄ in Q in general position. Blowing up p, p̄
yields a morphism CB6 −→ Q. Blowing up the points q, q̄ yields the birational
morphism CB4/P1 −→ CB6/P1. Denote by C̃q ⊂ CB4 the strict transform of the
pair of non-real conjugate fibres of CB6/P1 containing q and q̄. Its contraction yields
a morphism to CB6 over P1. We have now obtained the two left squares in Figure 5.
We can repeat the construction with q instead of p and obtain the right squares
in Figure 5. The blow-ups of p, p̄ and q, q̄ commute, which yields the lower square.
The upper square corresponds to the different orders of contraction of the disjoint



THE REAL PLANE CREMONA GROUP IS AN AMALGAMATED PRODUCT 9

CB6/P1 CB5/P1 CB6/P1

CB6/pt CB5/pt CB6/pt

Q/pt X7/pt X7/pt Q/pt

P2/pt

L̃p L̃q

qq̄

L̃p L̃q

qq̄ pp̄

pp̄

L̃p pp̄ L̃qqq̄

Figure 4. A disc of type 3.

pairs C̃p and C̃q. By Remark 2.9, there are no other contractions possible from CB4,
hence we have obtained a disc around the rank 3 fibration CB4/pt.

Q/pt

CB6/P1 CB6/pt CB6/pt CB6/P1

CB4/P1 CB4/pt CB4/P1

CB6/P1 CB6/pt CB6/pt CB6/P1

Q/pt

C̃p C̃q

C̃q

qq̄

C̃q C̃p

pp̄qq̄

C̃q

pp̄

pp̄ qq̄

Figure 5. A disc of type 4.

Example 2.13. We describe a disc of type 5, pictured in Figure 6. Pick two real
points p, q ∈ P2. Let F1 −→ P2 be the blow-up of p. The pencil of lines in P2 through
p induces the fibration F1/P1, and the fibre containing q is the strict transform of
the line L through p and q. The blow-up X7 −→ F1 of q induces a fibration X7/P1,
and the contraction of the strict transform L̃ of L yields a morphism X7 −→ F0

preserving this fibration. This yields the left half of the disc. Exchanging the roles
of p and q yields the right half, with the fibration X7/P1 induced by the pencil of
lines in P2 passing through q, and the lower middle square. The induced fibrations
on F0 = P1 × P1 are the two projections. On X7 there are only three (−1)-curves,
all of which are real curves, so our disc is complete.

F0/P1 F0/P1

F0/pt

X7/P1 X7/P1

F1/P1 X7/pt F1/P1

F1/pt F1/pt

P2/pt

L̃

p

L̃

q
L̃

q p

p q

Figure 6. A disc of type 5.
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Example 2.14. A disc of type 6 is constructed analogously to a disc of type 2,
and is pictured in Figure 7, but by using the conic bundle Fn/P1, n ≥ 0, instead of
CB6/P1. As in Figure 3, the points p and q in Figure 7 refer to real points or pairs of
non-real conjugate points. Moreover, we have m = n+ 1 (resp. m = n+ 2) if p is a
real point (resp. a pair of non-real conjugate points p) contained in the exceptional
section of Fn, and m = n − 1 (resp. m = n − 2) otherwise. The same holds for l
and q instead of m and p, which yields the possible values of k. In particular, there
are only Hirzebruch surfaces in such a disc.

Fk/P1

S2/P1 S2/P1

Fm/P1 S3/P1 Fl/P1

S2/P1 S2/P1

Fn/P1

f̃q

q

f̃p

pf̃qf̃p

q p

p

f̃p

q

f̃q

Figure 7. A disc of type 6.

Proposition 2.15.
(1) Any elementary disc in X is a disc of type 1, . . . , 6.
(2) If two distinct elementary discs intersect, they do so either in exactly one

vertex or in path of links.
(3) A disc of type a ∈ {2,3,4} and a disc of type b ∈ {5,6} intersect in at most

one vertex.

Proof. The second and third claim follows from (1) and checking Exampes 2.8–2.10.
Let D be an elementary disc and pick one of its squares S. It contains a unique
vertex that is a rank 1 fibration S/B, which is one of the rank 1 fibrations listed in
Lemma 2.2. The edges in S attached to S/B correspond to blow-ups over B of a real
point or a pair of non-real conjugate points or to F0/pt −→ F0/P1 by Lemma 2.2.
So, the square S appears in a disc of type 1, . . . , 6. The disc D contains a unique
rank 3 fibration, so it is the rank 3 fibration contained in S. It follows that D is a
disc of type 1, . . . , 6. �

3. The groups G∗, G◦ and H, and a quotient of BirR(P2)

3.1. The group H. Recall that G∗ ⊂ BirR(P2) is the group generated by AutR(P2)
and the group J∗ of elements preserving the pencil of lines through [1 : 0 : 0]. The
group G◦ ⊂ BirR(P2) is the group generated by AutR(P2) and the group J◦ of
elements preserving the pencil of conics through the two pairs [1 : i : 0], [1 : −i : 0]
and [0 : 1 : i], [0 : 1 : −i].

We denote by H ⊂ BirR(P2) the subgroup generated by AutR(P2) and the qua-
dratic involution σ : [x : y : z] 799K [xz : yz : x2 + y2]. We have H ⊆ G◦ ∩ G∗ since
σ ∈ J◦ ∩ J∗.

Lemma 3.1. Let g ∈ BirR(P2). Then
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(1) g ∈ G◦ if and only if there exists a path of links from (P2, id) to (P2, g) along
discs of type 1, . . . , 4 avoiding any vertices of the form (Fn, ϕ), n ≥ 0.

(2) g ∈ G∗ if and only if there exists a path of links from (P2, id) to (P2, g) along
discs of type 1, 5 and 6 avoiding any vertices of the form (Q, ϕ).

(3) g ∈ H if and only if there is a path of links from (P2, id) to (P2, g) along
discs of type 1.

Proof. (1) Let g ∈ G◦ and write g = gn+1αngn · · ·α1g1 for some gi ∈ J◦ and
αi ∈ AutR(P2). Let η : P2 99K CB6 the birational map from Proposition 2.6(2). Then
ηgiη

−1 is a birational map of the conic bundle CB6/P1. The map η corresponds
to a path of links along discs of type 1, 3 and 4. By Proposition 2.6(2), ηgiη−1

decomposes into links CB6 99K CB6 of type II over P1, corresponds to a path of
links along discs of type 2, 3, 4. So, there exists a path of links from (P2, id) to
(P2, g) along discs of type 1, . . . , 4 as claimed.

Suppose there is a path of links from (P2, id) to (P2, g) along discs of type 1, . . . ,
4 according to hypothesis. Then g is the composition of links of type II CB6/P1 99K
CB6/P1 or P2 99K Q blowing up a pair of non-real conjugate points and contracting
the line passing through them, or of type I Q −→ CB6 or of type III CB6 −→ Q.
In particular, g decomposes into automorphisms of P2 and elements of J◦, so is
contained in G◦.

(2) is shown analogously to (1) but now J∗ plays the role of J◦, the elementary
discs 1,5, 6 play the role of the elementary discs of type 1, 2, 3, 4, and the role of η
is played by the link P2 99K F1 of type 1 blowing up [0 : 0 : 1], which corresponds
to a path of links in an elementary disc of type 1.

(3) The claim follows from the fact that σ : [x : y : z] 799K [xz : yz : x2 + y2]
has a decomposition into links corresponding to the path of links (P2/pt, id) ←−
X7/pt −→ Q/pt←− X7/pt −→ (P2/pt, σ) along a disc of type 1. �

Lemma 3.2. We have H = G∗ ∩ G◦.

Proof. Let g ∈ G∗ ∩ G◦. By Lemma 3.1(1) there exists a path γ◦ of links from
(P2, id) to (P2, g) along discs of type 1, . . . , 4. By Lemma 3.1(2) there exists a path
γ∗ of links from (P2, id) to (P2, g) along discs of type 1, 5, 6. Running from (P2, id)
to (P2, g) along γ◦ and then returning to (P2, id) via γ∗ yields a loop γ in X at
(P2, id). By Theorem 2.5(2), γ is the boundary of a finite union D ⊂ X of intervals
and elementary discs. By Proposition 2.15, the elementary discs in the Di are discs
of type 1, . . . , 6, and we colour them as follows: the ones of type 2, 3, 4 we colour
blue, the ones of type 5, 6 we colour red and the ones of type 1 we colour purple.
Vertices or edges contained in the intersection of two discs of different colour are
coloured purple, which is consistent with the intersection properties of elementary
discs by Proposition 2.15. By Lemma 3.1(3) it suffices to construct a purple path
of links from (P2, id) to (P2, g) contained in D. By Lemma 3.1(1)&(2), the path γ∗
consists of red and purple intervals and γ◦ consists of blue and purple intervals,
so that γ∗ ∩ γ◦ is a union of purple intervals. The closure of D \ (γ∗ ∩ γ◦) is a
finite union of discs D1, . . . ,Dn intersecting pairwise in at most one vertex. We can
assume that γ∗ and γ◦ do not contain any loops, so that intersections of the Di are
vertices contained in γ∗ ∩ γ◦, which are in particular purple. For i = 1, . . . , n, let
Ri ⊂ Di be the union of red elementary discs in Di and Bi ⊂ Di the union of blue
elementary discs in Di. Then Ri ∩ Bi is a non-empty finite set of vertices. Since
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Di is a disc, Pi := Di \ (Ri ∪ Bi) is covered by purple discs and has a connected
component containing Di ∩ γ∗ ∩ γ◦. �

3.2. The group G◦. We denote by σ ∈ BirR(P2) the quadratic map

σ : [x : y : z] 799K [xz : yz : x2 + y2].

Recall that for any quadratic map f ∈ BirR(P2) with a pair of non-real conjugate
base-points and one real base-point, there exist α, β ∈ AutR(P2) such that f =
ασβ. Furthermore, if deg(σασ) = 2, then σασ has one real and a pair of non-real
conjugate base-points.

Remark 3.3. Let C ⊂ P2 be a curve and let f ∈ J∗ be of degree d. Let p0 := [0 :
0 : 1], p1, . . . , p2d−2 be the base-points of f and denote by mC(t) is the multiplicity
of C in a point t. If f(C) is a curve, then

deg(f(C)) = deg(C)d−mC(p)(d− 1)−
2d−2∑
i=1

mC(pi)

= deg(C) +

d−1∑
i=1

deg(C)−mC(p)−mC(p2i−1)−mC(p2i)

If deg(C) > deg(f(C)), then the sum in the last line is negative, which implies that
there exists j ∈ {1, . . . , 2d− 2} such that

mC(p) +mC(p2j−1) +mC(p2j) > deg(C)

The same reasoning holds with ≥ instead of >.

Lemma 3.4. Any quadratic map in H has a real and a pair of non-real base-points.
In particular, the map τ : [x : y : z] 799K [yz : xz : xy] is contained in J∗ \H, and so
H ( G∗.

Proof. Let f ∈ H be a quadratic map. We write f = fn · · · f1, where fi = αigiβi
with αi, βi ∈ AutR(P2) and gi ∈ J∗ of degree deg(gi) > 1 with exactly one real
base-point and all other base-points non-real points; we can do this because H is
generated by AutR(P2) and σ, and in a first step, we can take gi = σ for all i. For
i = 1, . . . , n, we denote by Λi the linear system of the map (fi · · · f1)−1, and

D := max{deg(Λi) | i = 1, . . . , n}, N := max{i | deg(Λi) = D | i = 1, . . . , n}.

We now do induction on the lexicographically ordered pair (D,N). Note that D ≥
2, since deg(f) = 2, and that fi+1fi has at most two real base-points for any
i = 1, . . . , n− 1.

If (D,N) = (2, 1), then f = f1 = α1σβ1 and we are done. Suppose that (D,N) >
(2, 1). We will write fN+1fN = τm · · · τ1, where τi = αig

′
iβi with αi, βi ∈ AutR(P2)

and g′i ∈ J∗ of degree deg(g′i) > 1 with exactly one real base-point and all other
base-points non-real points, and such that the pair (D′, N ′) associated to the se-
quence fn · · · fN+2τm · · · τ1fN−1 · · · f1 is strictly smaller than (D,N).

If D = 2, then (D,N) = (2, n) and so f2f1 is of degree ≤ 2. If f2f1 is linear, we
replace f3f2f1 in the composition by τ := f3f2f1. The sequence fn · · · f4τ has pair
(D′, N ′) = (2, n − 2). If τ := f2f1 is of degree 2, it has one real and two non-real
conjugate base-points, and the sequence fn · · · f3τ has associated pair (D′, N ′) =
(2, n− 1).
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Suppose that D > 2. We denote by m(t) the multiplicity of ΛN in a point t. Let
q1 (resp. q2) be the real base-point of f−1

N (resp. fN+1).
(a) If q1 = q2, then then (βN+1αN ) ∈ J∗, and so gN+1βN+1αNgN ∈ J∗ and

the map τ := fN+1fN = αN+1(gN+1βN+1αNgN )βN has exactly real base-point,
namely the real base-point one of fN , and all its other base-points are non-real
points. The sequence fn · · · fN+2τfN−1 · · · f1 has associated pair (D′, N ′) < (D,N).

(b) Suppose that q1 6= q2. By Remark 3.3 applied to a general member of the
linear system ΛN , there exist base-points r1, s1 (resp. r2, s2) of f−1

N (resp. fN+1)
such that

D ≤ m(q1) +m(r1) +m(s1), D < m(q2) +m(r2) +m(s2). (1)

For i = 1, 2, we can assume that m(ri) ≥ m(si) and that ri is a point in P2 or is
infinitely near qi.

(b1) Suppose that m(q1) ≥ m(q2). We first show that r2 is a point in P2. If r2

is infinitely near q2, then m(q2) ≥ m(r1) + m(r̄1) = 2m(r1) ≥ 2m(s1). We obtain
from inequalities (1) that D < m(q1) + 2 · m(q1)

2 = 2m(q1), which is impossible. So,
r2 is a point in P2. From inequalities (1) we obtain that

D < m(q2) + 2m(r2) ≤ m(q1) + 2m(r2).

It follows that the triples q1, r2, r̄2 and q2, r2, r̄2 are not collinear. Thus, there exist
quadratic maps ρ1, ρ2 ∈ BirR(P2) with base-points q1, r2, r̄2 and q2, r2, r̄2, respec-
tively. We have

deg(ρifN · · · f1) = 2D −m(qi)− 2m(r2) < D, i = 1, 2

and we can write τ1 := ρ1fN = γ1gδ1 and τ3 := fN+1ρ
−1
2 = γ2g

′δ2 for some
γ1, γ2, δ1, δ2 ∈ AutR(P2) and g, g′ ∈ J∗ with only one real base-point and all
other base-points real points. Furthermore, τ2 := ρ2ρ

−1
1 is a quadratic map with a

real and a pair of non-real conjugate base-points, so we can write τ2 = γ3σδ3 for
some γ3, δ3 ∈ AutR(P2). The situation is summarised in the following commuta-
tive diagram, where Λ̃i is the linear system of (ρifN · · · f1)−1, which is of degree
deg(Λ̃i) < D, i = 1, 2.

ΛN

ΛN−1 Λ̃1 Λ̃2 ΛN+1

ρ1
ρ2

fN+1fN

τ1 τ2 τ3

The sequence fm · · · fN+2τ3τ2τ1fN−1 · · · f1 has associated pair (D′, N ′) < (D,N).
(b2) If m(q2) > m(q1) we proceed analogously to the case (b1) with r1 instead

of r2. �

Lemma 3.5. The group G◦ has uncountable index in BirR(P2).

Proof. Consider the map τ : [x : y : z] 799K [yz : xz : xy] and define the group

A := {[x : y : z] 7→ [x+ az : y + bz : z] | a, b ∈ R} ⊂ AutR(P2)

Consider the map between sets ψ : A −→ BirR(P2)/G◦, α 7→ (ατ)G◦ We now prove
that it is injective, which will yield the claim. For all α ∈ A the map τατ is of degree
≤ 2, and τατ ∈ AutR(P2) if and only if α = id. If τατ is of degree 2, it has three
real base-points. Let β, γ ∈ A such that (βτ)G◦ = (γτ)G◦. Then τ(β−1γ)τ ∈ G◦,
and in particular τ(β−1γ)τ ∈ G∗ ∩G◦ = H, by Lemma 3.2. Lemma 3.4 implies that
τβ−1γτ ∈ AutR(P2) and hence β−1γ = id. It follows that ϕ is injective. �
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3.3. The group G∗ and a quotient of BirR(P2).

Remark 3.6. A link of type II of CB6 blowing up a pair of non-real conjugate
points is conjugate via the birational map η : P2 99K CB6 from Proposition 2.6(2)
to an element g ∈ J◦ of degree 5 with three pairs of non-real conjugate base-points,
not all on one conic.

Any two non-collinear pairs of non-real conjugate points in P2 can be sent by
an automorphism of P2 onto [1 : i : 0], [1 : −i : 0], [0 : 1 : i], [0 : 1 : −i]. So, for
any element of f ∈ BirR(P2) of degree 5 with three pairs of non-real conjugate
base-points not on one conic, there are α, β ∈ AutR(P2) such that αfβ ∈ J◦. We
call f a standard quintic transformation. See [3, Example] or [13, §1] for equivalent
definitions.

Lemma 3.7 ([18, Lemma 3.19]). Let f ∈ J , η : P2 99K CB6 the birational map from
Proposition 2.6(2) and η−1fη = ϕn · · ·ϕ1 a decomposition into links of type II
as in Proposition 2.6(2). For j = 1, . . . , s, let Cj be a (real or non-real) fibre of
π : CB6 −→ P1 contracted by ϕj and π(Cj) = [aj + ibj : 1] its image in P1. We
define vj = 1− |aj |

a2j+b2j
∈ (0, 1] if bj 6= 0, and vj = 0 otherwise. Then

ψ : J◦ −→
⊕
(0,1]

Z/2Z, f 7→
s∑
j=1

evj

is a surjective homomorphism of groups whose kernel contains all elements of J◦
of degree ≤ 4.

We now reprove [18, Proposition 5.3] by using the principle idea of [11] in the
construction of a homomorphism Bir(P2

k) −→ ˚I Z/2Z over a perfect field k.

Proposition 3.8. The homomorphism ψ : J◦ →
⊕

(0,1] Z/2Z lifts to a surjective
homomorphism

Ψ: BirR(P2) −→
⊕
(0,1]

Z/2Z

whose kernel contains G∗.

Proof. We denote by BirMori(P2) the set of birational transformations between
rank 1 fibrations. It is a groupoid and contains BirR(P2) as subgroupoid, so it
suffices to construct a homomorphism of groupoids

Ψ: BirMori(P2) −→
⊕
(0,1]

Z/2Z

whose restriction to its subgroup J◦ is ψ and whose kernel contains G∗.
Let ϕ : CB6 99K CB6 be a link of type II over P1 blowing up a pair of non-real

conjugate points. Let η1 : P2 99K Q and η2 : Q 99K CB6 be the links from Proposi-
tion 2.6(2) and η = η2η1 Then η−1ϕη ∈ J◦ is a standard quintic transformation
and we define Ψ(ϕ) := ψ(η−1ϕη). For any other link ϕ ∈ BirMori(P2) and any
isomorphism ϕ ∈ BirMori(P2) we define Ψ(ϕ) := 0. To show that Ψ is a homo-
morphism of groupoids, it remains to check that any relation between links and
isomorphisms in BirMori(P2) is sent onto zero. Since

⊕
Z/2Z is abelian, it suffices

by Theorem 2.5(2) to check that elementary relations in BirMori(P2) are sent onto
zero by Ψ. Let ϕn · · ·ϕ1 = id be an elementary relation in BirMori(P2). We can
assume that one of the ϕi is a link of type II of CB6 over P1 with a pair of non-real
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conjugate base-points. The elementary relation ϕn · · ·ϕ1 = id corresponds to the
boundary of an elementary disc in X , and it is of type 2 or type 4 by Proposi-
tion 2.15 because one of the ϕi is a link of type II of CB6 over P1 with a pair of
non-real base-points.

If the disc is of type 2, then n = 4, η−1ϕiη ∈ J , i = 1, . . . , 4, and hence

Ψ(ϕ4) · · ·Ψ(ϕ1) = ψ(η−1ϕ4η) · · ·ψ(η−1ϕ1η) = ψ(η−1ϕ1 · · ·ϕ4η) = 0.

If the disc is of type 4, we can assume up to conjugation that ϕ1, ϕ
−1
3 , ϕ4, ϕ

−1
6 : Q 99K

CB6 are the links of type I in the relation. Up to automorphisms of Q (which are
sent onto zero by Ψ), we can furthermore assume that ϕ1 = ϕ−1

3 = η2. Then
η−1

1 ϕ3ϕ2ϕ1η1 = η−1ϕ2η ∈ J◦, and hence also η−1
1 ϕ6ϕ5ϕ4η1 ∈ J◦. We obtain that

Ψ(ϕ6) · · ·Ψ(ϕ1) = Ψ(ϕ5)Ψ(ϕ2) = ψ(η−1
1 ϕ6ϕ5ϕ4η1)ψ(η−1ϕ2η) = 0.

This shows that Ψ is a homomorphism of groupoids. By definition it coincides with
ψ on J◦, and its kernel contains G∗ by Proposition 2.6(1). �

Corollary 3.9. The group G∗ does not contain any standard quintic transforma-
tions. In particular, H ( G◦ and the index of G∗ in BirR(P2) is uncountable.

Proof. Let Ψ: BirR(P2) −→
⊕

(0,1] Z/2Z be the homomorphism from Proposi-
tion 3.8. Its kernel contains G∗ and hence also H. For any standard quintic transfor-
mation f ∈ G◦, we have Ψ(f) 6= 0 by Remark 3.6, Lemma 3.7 and Proposition 3.8.
It follows that f /∈ G∗. Moreover, Ψ induces a surjective map BirR(P2) /G∗ −→⊕

(0,1] Z/2Z and hence the quotient BirR(P2) /G∗ is uncountable. �

4. Proofs of the main results

Proof of Theorem 1.1. The group BirR(P2) is generated by the groups G∗ and G◦ by
[3, Theorem 1.1]. To show that BirR(P2) is isomorphic to the amalgamated product
G∗˚G∗∩G◦ G◦, it suffices to show that any relation in BirR(P2) is the composition of
conjugates of relations in G∗ and relations in G◦. By Theorem 2.5(2), any relation
in BirR(P2) is generated by conjugates of elementary relations of links. An elemen-
tary relation is the boundary of an elementary disc, which are of type 1, . . . , 6 by
Proposition 2.15. The boundary of a disc of type 2, 3 and 4 is conjugate a relation
in G◦, the boundary of a disc of type 5 and 6 are conjugate to relations in G∗, and
the boundary of a discs of type 1 are conjugate to relations in H by Lemma 3.1.
We have G∗ ∩ G◦ = H by Lemma 3.2 and it is a proper subgroup of G◦ and G∗ by
Lemma 3.4 and Corollary 3.9. The groups G∗ and G◦ have uncountable index in
BirR(P2) by Corollary 3.9. �

Theorem 1.3. The homomorphism Ψ: BirR(P2)→
⊕

(0,1] Z/2Z from Proposition 3.8
coincides with the one given in [18, Proposition 5.3] since their restriction to the
generating set AutR(P2)∪J◦∪J∗ of BirR(P2) coincide. The kernel of Ψ is computed
in [18, §6] by using [18, §2–3] and is equal to [BirR(P2),BirR(P2)] and to the normal
subgroup generated by AutR(P2). �

Proof of Corollary 1.2. By Theorem 1.1, the group BirR(P2) acts on the Bass-Serre
tree T of the amalgamated product G∗∗G∗∩G◦ G◦. Every element of BirR(P2) of finite
order has a fixed point on T . It follows that every finite subgroup of BirR(P2) has a
fixed point on T [15, §I.6.5, Corollary 3], and is in particular conjugate to a subgroup
of G∗ or of G◦. For infinite algebraic subgroups of BirR(P2), it suffices to check the
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claim for the maximal algebraic subgroups of BirR(P2). By [12, Theorem 1.1], for
any infinite maximal algebraic subgroup G of BirR(P2) there is a birational map
θ : P2 99K X, where X is one of the surfaces in the list below and G = θ−1 Aut(X)θ:

(1) X = P2,
(2) X = Q,
(3) X = Fn, n 6= 1,
(4) X is a del Pezzo surface of degree 6 with a birational morphism X −→ F0

blowing-up a pair of non-real conjugate points.
(5) X is a del Pezzo surface of degree 6 with a birational morphism X −→ F0

blowing-up two real points on F0,
(6) There is a birational morphism X −→ CB6 over P1 of conic bundles blowing

up n ≥ 1 pairs of non-real conjugate points on non-real fibres on the pair
of disjoint non-real conjugate (−1)-curves of CB6 (the exceptional divisors
of the contraction CB6 −→ Q),

(7) There is a birational morphism X −→ Fn of conic bundles blowing up
2n ≥ 4 points on the zero section of self-intersection n.

(1)&(2)&(3) We have AutR(P2) ⊂ H = G∗ ∩ G◦. The group AutR(Q) is conjugate
to a subgroup of G◦, and for n ≥ 0, the group AutR(Fn) is conjugate to a subgroup
of G∗.

(4) The surface X contains exactly three pairs of non-real conjugate disjoint
(−1)-curves. The group AutR(X) is generated by the lift of a subgroup of AutR(F0)
and two elements descending to birational maps of F0 preserving one of the two
fibrations F0/P1 [12, Proposition 3.5(2)&(3)]. So, AutR(X) is conjugate to a sub-
group of G∗.

(5) The surface X contains exactly six real (−1)-curves. Via the blow-down
η : X → P2 of three disjoint (−1)-curves, the group AutR(X) is conjugate to a
subgroup of G∗.

(6) The group AutR(X) is generated by the lift of a subgroup of AutR(Q) and by
elements descending to birational maps of CB6 over P1 [12, Propositio 4.5(1)&(2)].
So, AutR(X) is conjugate to a subgroup of G◦.

(7) The group AutR(X) is generated by the lift of a subgroups of AutR(Fn) and
by elements descending to birational maps of Fn [12, Proposition 4.8(1)&(2)]. So,
AutR(X) is conjugate to a subgroup of G∗. �
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